Electrical synapses between AII amacrine cells in the retina: Function and modulation

Adaptation enables the visual system to operate across a large range of background light intensities. There is evidence that one component of this adaptation is mediated by modulation of gap junctions functioning as electrical synapses, thereby tuning and functionally optimizing specific retinal microcircuits and pathways. The AII amacrine cell is an interneuron found in most mammalian retinas and plays a crucial role for processing visual signals in starlight, twilight and daylight. AII amacrine cells are connected to each other by gap junctions, potentially serving as a substrate for signal averaging and noise reduction, and there is evidence that the strength of electrical coupling is modulated by the level of background light. Whereas there is extensive knowledge concerning the retinal microcircuits that involve the AII amacrine cell, it is less clear which signaling pathways and intracellular transduction mechanisms are involved in modulating the junctional conductance between electrically coupled AII amacrine cells. Here we review the current state of knowledge, with a focus on the recent evidence that suggests that the modulatory control involves activity-dependent changes in the phosphorylation of the gap junction channels between AII amacrine cells, potentially linked to their intracellular Ca(2+) dynamics. This article is part of a Special Issue entitled Electrical Synapses.

[1]  H. Wässle,et al.  AII Amacrine Cells Express L-Type Calcium Channels at Their Output Synapses , 2003, The Journal of Neuroscience.

[2]  J. B. Demb,et al.  Disinhibition Combines with Excitation to Extend the Operating Range of the OFF Visual Pathway in Daylight , 2008, The Journal of Neuroscience.

[3]  E. Hartveit,et al.  AII (Rod) Amacrine Cells Form a Network of Electrically Coupled Interneurons in the Mammalian Retina , 2002, Neuron.

[4]  B. Sabatini,et al.  Spine calcium signaling , 2012 .

[5]  B. Teubner,et al.  Functional Expression of the Murine Connexin 36 Gene Coding for a Neuron-Specific Gap Junctional Protein , 2000, The Journal of Membrane Biology.

[6]  D. I. Vaney The morphology and topographic distribution of AII amacrine cells in the cat retina , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[7]  E. Strettoi,et al.  Synaptic connections of rod bipolar cells in the inner plexiform layer of the rabbit retina , 1990, The Journal of comparative neurology.

[8]  S. Massey,et al.  Electrical synapses in retinal ON cone bipolar cells: subtype-specific expression of connexins. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Béla Völgyi,et al.  Function and plasticity of homologous coupling between AII amacrine cells , 2004, Vision Research.

[10]  B. Connors,et al.  Long-Term Modulation of Electrical Synapses in the Mammalian Thalamus , 2005, Science.

[11]  B. Sakmann,et al.  Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches , 1981, Pflügers Archiv.

[12]  D. Mastronarde,et al.  Exploring the retinal connectome , 2011, Molecular vision.

[13]  P. Sterling Microcircuitry of the cat retina. , 1983, Annual review of neuroscience.

[14]  Paul Witkovsky,et al.  Dopamine and retinal function , 2004, Documenta Ophthalmologica.

[15]  Ji-Jie Pang,et al.  Direct rod input to cone BCs and direct cone input to rod BCs challenge the traditional view of mammalian BC circuitry , 2009, Proceedings of the National Academy of Sciences.

[16]  R. Weiler,et al.  Deletion of Connexin45 in Mouse Retinal Neurons Disrupts the Rod/Cone Signaling Pathway between AII Amacrine and ON Cone Bipolar Cells and Leads to Impaired Visual Transmission , 2005, The Journal of Neuroscience.

[17]  S. Massey,et al.  Dopamine-Stimulated Dephosphorylation of Connexin 36 Mediates AII Amacrine Cell Uncoupling , 2009, The Journal of Neuroscience.

[18]  D. Spray,et al.  Evidence for a role of the N‐terminal domain in subcellular localization of the neuronal connexin36 (Cx36) , 2002, Journal of neuroscience research.

[19]  S. Bloomfield,et al.  Light-induced modulation of coupling between AII amacrine cells in the rabbit retina , 1997, Visual Neuroscience.

[20]  R. Weiler,et al.  Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  Helga Kolb,et al.  Rod and Cone Pathways in the Inner Plexiform Layer of Cat Retina , 1974, Science.

[22]  N. Vardi,et al.  Coordinated multivesicular release at a mammalian ribbon synapse , 2004, Nature Neuroscience.

[23]  H. Wässle,et al.  Dopaminergic and indoleamine-accumulating amacrine cells express GABA- like immunoreactivity in the cat retina , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  J. Diamond,et al.  Sustained Ca2+ Entry Elicits Transient Postsynaptic Currents at a Retinal Ribbon Synapse , 2003, The Journal of Neuroscience.

[25]  R. Pourcho,et al.  A combined golgi and autoradiographic study of (3H)glycine‐accumulating amacrine cells in the cat retina , 1985, The Journal of comparative neurology.

[26]  R. Weiler,et al.  Protein Kinase A-mediated Phosphorylation of Connexin36 in Mouse Retina Results in Decreased Gap Junctional Communication between AII Amacrine Cells* , 2006, Journal of Biological Chemistry.

[27]  G. Maccaferri,et al.  Noradrenergic Modulation of Electrical Coupling in GABAergic Networks of the Hippocampus , 2008, The Journal of Neuroscience.

[28]  S. Massey,et al.  Presynaptic Activity Drives Increased Phosphorylation of Connexin 36 in AII Amacrine Cells , 2010 .

[29]  E. Strettoi,et al.  Cone bipolar cells as interneurons in the rod, pathway of the rabbit retina , 1994, The Journal of comparative neurology.

[30]  C. Ribelayga,et al.  The Circadian Clock in the Retina Controls Rod-Cone Coupling , 2008, Neuron.

[31]  K. Horikawa,et al.  A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates , 1988, Journal of Neuroscience Methods.

[32]  T. Voigt,et al.  Dopaminergic innervation of A II amacrine cells in mammalian retina , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  H. Wässle,et al.  Immunohistochemical Localization of Dopamine D Receptors in Rat Retina , 1996, The European journal of neuroscience.

[34]  R. Weiler,et al.  Expression of Neuronal Connexin36 in AII Amacrine Cells of the Mammalian Retina , 2001, The Journal of Neuroscience.

[35]  B. Völgyi,et al.  The diverse functional roles and regulation of neuronal gap junctions in the retina , 2009, Nature Reviews Neuroscience.

[36]  Rafael Yuste,et al.  Space matters: local and global dendritic Ca2+ compartmentalization in cortical interneurons , 2005, Trends in Neurosciences.

[37]  B. Völgyi,et al.  Convergence and Segregation of the Multiple Rod Pathways in Mammalian Retina , 2004, The Journal of Neuroscience.

[38]  Rava Azeredo da Silveira,et al.  Approach sensitivity in the retina processed by a multifunctional neural circuit , 2009, Nature Neuroscience.

[39]  N. Vardi,et al.  Simulation of the Aii amacrine cell of mammalian retina: Functional consequences of electrical coupling and regenerative membrane properties , 1995, Visual Neuroscience.

[40]  E. Hartveit,et al.  Electrical synapses between AII amacrine cells: dynamic range and functional consequences of variation in junctional conductance. , 2008, Journal of neurophysiology.

[41]  E. Hartveit,et al.  Electrical coupling and passive membrane properties of AII amacrine cells. , 2010, Journal of neurophysiology.

[42]  R. Nelson,et al.  AII amacrine cells quicken time course of rod signals in the cat retina. , 1982, Journal of neurophysiology.

[43]  S. Massey,et al.  Glutamate receptors at rod bipolar ribbon synapses in the rabbit retina , 2002, The Journal of comparative neurology.

[44]  B. Connors Electrical Signaling with Neuronal Gap Junctions , 2009 .

[45]  H. Wässle,et al.  Glutamate Receptors in the Rod Pathway of the Mammalian Retina , 2001, The Journal of Neuroscience.

[46]  E. M. Lasater Retinal horizontal cell gap junctional conductance is modulated by dopamine through a cyclic AMP-dependent protein kinase. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[47]  E. Hartveit,et al.  Meclofenamic acid blocks electrical synapses of retinal AII amacrine and on-cone bipolar cells. , 2009, Journal of neurophysiology.

[48]  J. F. Ek-Vitorín,et al.  Structural basis for the selective permeability of channels made of communicating junction proteins. , 2013, Biochimica et biophysica acta.

[49]  M. Bennett,et al.  PHYSIOLOGY OF ELECTROTONIC JUNCTIONS * , 1966, Annals of the New York Academy of Sciences.

[50]  F. Helmchen Biochemical compartmentalization in dendrites , 2007 .

[51]  S. Massey,et al.  Rod pathways in the mammalian retina use connexin 36 , 2001, The Journal of comparative neurology.

[52]  S. Mills,et al.  Gap junctional regulatory mechanisms in the AII amacrine cell of the rabbit retina , 2004, Visual Neuroscience.

[53]  S. Bloomfield,et al.  Connexin36 Is Essential for Transmission of Rod-Mediated Visual Signals in the Mammalian Retina , 2002, Neuron.

[54]  Fred Rieke,et al.  Signals and noise in an inhibitory interneuron diverge to control activity in nearby retinal ganglion cells , 2008, Nature Neuroscience.

[55]  P. Sterling,et al.  Architecture of rod and cone circuits to the on-beta ganglion cell , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  D. I. Vaney,et al.  Patterns of neuronal coupling in the retina , 1994, Progress in Retinal and Eye Research.

[57]  A. Trautmann,et al.  Single-channel currents of an intercellular junction , 1985, Nature.

[58]  S. Massey,et al.  Gap junctions between AII amacrine cells and calbindin-positive bipolar cells in the rabbit retina , 1999, Visual Neuroscience.

[59]  J. B. Demb,et al.  Retina: Microcircuits for Daylight, Twilight, and Starlight , 2010 .

[60]  Joshua H. Singer,et al.  Fast neurotransmitter release triggered by Ca influx through AMPA-type glutamate receptors , 2006, Nature.

[61]  P. Svenningsson,et al.  Cellular localization and function of DARPP‐32 in the rodent retina , 2007, The European journal of neuroscience.

[62]  D. I. Vaney,et al.  Many diverse types of retinal neurons show tracer coupling when injected with biocytin or Neurobiotin , 1991, Neuroscience Letters.

[63]  H. Wässle,et al.  Electron microscopic analysis of the rod pathway of the rat retina , 1993, The Journal of comparative neurology.

[64]  E. Hartveit,et al.  Functional Properties of Spontaneous EPSCs and non‐NMDA Receptors in Rod Amacrine (AII) Cells in the Rat Retina , 2003, The Journal of physiology.

[65]  Heinz Wässle,et al.  The rod pathway of the macaque monkey retina: Identification of AII‐amacrine cells with antibodies against calretinin , 1995, The Journal of comparative neurology.

[66]  J. Dowling,et al.  Dopamine decreases conductance of the electrical junctions between cultured retinal horizontal cells. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[67]  E. Trexler,et al.  Differential output of the high‐sensitivity rod photoreceptor: AII amacrine pathway , 2008, The Journal of comparative neurology.

[68]  J. Dowling,et al.  Horizontal cell gap junctions: single-channel conductance and modulation by dopamine. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[69]  R. Dacheux,et al.  AII amacrine cells in the rabbit retina possess AMPA-, NMDA-, GABA-, and glycine-activated currents , 2004, Visual Neuroscience.

[70]  S. Massey,et al.  Antibody to calretinin stains AII amacrine cells in the rabbit retina: Double‐label and confocal analyses , 1999, The Journal of comparative neurology.

[71]  S. Massey Connexins in the Mammalian Retina , 2009 .

[72]  E. Strettoi,et al.  Synaptic connections of the narrow‐field, bistratified rod amacrine cell (AII) in the rabbit retina , 1992, The Journal of comparative neurology.

[73]  H. Wässle,et al.  Glycinergic synapses in the rod pathway of the rat retina: cone bipolar cells express the alpha 1 subunit of the glycine receptor , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[74]  G. Fain,et al.  Adaptation in vertebrate photoreceptors. , 2001, Physiological reviews.

[75]  S. Massey,et al.  Differential properties of two gap junctional pathways made by AII amacrine cells , 1995, Nature.

[76]  E. Hartveit,et al.  AII amacrine cells express functional NMDA receptors , 1997, Neuroreport.

[77]  Wei Li,et al.  Simultaneous contribution of two rod pathways to AII amacrine and cone bipolar cell light responses. , 2005, Journal of neurophysiology.

[78]  S. Massey,et al.  The kinetics of tracer movement through homologous gap junctions in the rabbit retina , 1998, Visual Neuroscience.

[79]  R. Dacheux,et al.  The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[80]  T. Lamb,et al.  The relation between intercellular coupling and electrical noise in turtle photoreceptors. , 1976, The Journal of physiology.

[81]  K. Willecke,et al.  The neuronal connexin36 interacts with and is phosphorylated by CaMKII in a way similar to CaMKII interaction with glutamate receptors , 2008, Proceedings of the National Academy of Sciences.

[82]  R. Eckert Gap-junctional single-channel permeability for fluorescent tracers in mammalian cell cultures. , 2006, Biophysical journal.

[83]  M. Bennett,et al.  Dynamics of electrical transmission at club endings on the Mauthner cells , 2004, Brain Research Reviews.

[84]  Helga Kolb,et al.  A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina , 1975, Brain Research.

[85]  R. Dingledine,et al.  The glutamate receptor ion channels. , 1999, Pharmacological reviews.

[86]  Grant S. Nichols,et al.  DARPP‐32‐like immunoreactivity in AII amacrine cells of rat retina , 2004, The Journal of comparative neurology.

[87]  S. Bloomfield,et al.  Comparison of the responses of AII amacrine cells in the dark- and light-adapted rabbit retina , 1999, Visual Neuroscience.

[88]  J. Diamond Calcium-Permeable AMPA Receptors in the Retina , 2011, Front. Mol. Neurosci..

[89]  D. Clapham,et al.  Calcium signaling , 1995, Cell.

[90]  G. Matthews,et al.  Novel clustering of sodium channel Nav1.1 with ankyrin-G and neurofascin at discrete sites in the inner plexiform layer of the retina , 2005, Molecular and Cellular Neuroscience.

[91]  W. Armstrong,et al.  A biotin-containing compound N-(2-aminoethyl)biotinamide for intracellular labeling and neuronal tracing studies: Comparison with biocytin , 1991, Journal of Neuroscience Methods.

[92]  S. Hecht,et al.  ENERGY, QUANTA, AND VISION , 1942, The Journal of general physiology.

[93]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[94]  N. Brecha,et al.  AII amacrine cell population in the rabbit retina: Identification by parvalbumin immunoreactivity , 1995, The Journal of comparative neurology.

[95]  B. Boycott,et al.  Functional architecture of the mammalian retina. , 1991, Physiological reviews.

[96]  E. Hartveit,et al.  Reciprocal synaptic interactions between rod bipolar cells and amacrine cells in the rat retina. , 1999, Journal of neurophysiology.

[97]  Baltazar Zavala,et al.  Activity-Dependent Long-Term Depression of Electrical Synapses , 2011, Science.

[98]  Zhuo-Hua Pan,et al.  Action Potential Generation at an Axon Initial Segment-Like Process in the Axonless Retinal AII Amacrine Cell , 2011, The Journal of Neuroscience.

[99]  E. Hartveit,et al.  Activation of a presynaptic glutamate transporter regulates synaptic transmission through electrical signaling , 2006, Nature Neuroscience.

[100]  B. Connors,et al.  Electrical synapses in the mammalian brain. , 2004, Annual review of neuroscience.

[101]  E. Hartveit,et al.  Functional properties of spontaneous IPSCs and glycine receptors in rod amacrine (AII) cells in the rat retina , 2006, The Journal of physiology.

[102]  J. Röhrenbeck,et al.  Immunocytochemical staining of AII‐amacrine cells in the rat retina with antibodies against parvalbumin , 1993, The Journal of comparative neurology.

[103]  Shaul Hestrin,et al.  The Strength of Electrical Synapses , 2011, Science.

[104]  J. Sahel,et al.  The glutamate transporter EAAT5 works as a presynaptic receptor in mouse rod bipolar cells , 2006, The Journal of physiology.

[105]  D. Bowie Redefining the classification of AMPA‐selective ionotropic glutamate receptors , 2012, The Journal of physiology.

[106]  Alberto E. Pereda,et al.  Potentiation of Electrical and Chemical Synaptic Transmission Mediated by Endocannabinoids , 2007, Neuron.

[107]  R. Weiler,et al.  pH-gated dopaminergic modulation of horizontal cell gap junctions in mammalian retina , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[108]  H. Wässle,et al.  Glycinergic input of small-field amacrine cells in the retinas of wildtype and glycine receptor deficient mice , 2008, Molecular and Cellular Neuroscience.

[109]  Shigetada Nakanishi,et al.  Developmentally regulated postsynaptic localization of a metabotropic glutamate receptor in rat rod bipolar cells , 1994, Cell.

[110]  P Sterling,et al.  Microcircuitry of bipolar cells in cat retina , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[111]  E. Hartveit,et al.  Electrical Synapses Mediate Signal Transmission in the Rod Pathway of the Mammalian Retina , 2002, The Journal of Neuroscience.

[112]  Mark S. Cembrowski,et al.  The mechanisms of repetitive spike generation in an axonless retinal interneuron. , 2012, Cell reports.

[113]  Jonathan B Demb,et al.  Intrinsic properties and functional circuitry of the AII amacrine cell , 2012, Visual Neuroscience.

[114]  F. Tamalu,et al.  Glutamatergic input is coded by spike frequency at the soma and proximal dendrite of AII amacrine cells in the mouse retina , 2007, The European journal of neuroscience.

[115]  H. Wässle,et al.  Synaptic localization of NMDA receptor subunits in the rat retina , 2000, The Journal of comparative neurology.

[116]  H. Wassle,et al.  Voltage- and transmitter-gated currents of all-amacrine cells in a slice preparation of the rat retina , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[117]  S. Hestrin,et al.  A network of fast-spiking cells in the neocortex connected by electrical synapses , 1999, Nature.

[118]  E. Hartveit,et al.  Accurate measurement of junctional conductance between electrically coupled cells with dual whole-cell voltage-clamp under conditions of high series resistance , 2010, Journal of Neuroscience Methods.

[119]  H. Kolb The inner plexiform layer in the retina of the cat: electron microscopic observations , 1979, Journal of neurocytology.

[120]  E. A. Schwartz,et al.  Modulation of an electrical synapse between solitary pairs of catfish horizontal cells by dopamine and second messengers. , 1989, The Journal of physiology.

[121]  Y. Kaneko,et al.  Expression of Nav1.1 in rat retinal AII amacrine cells , 2007, Neuroscience Letters.

[122]  A. Valberg Light Vision Color , 2005 .

[123]  Heinz Wässle,et al.  Parallel processing in the mammalian retina , 2004, Nature Reviews Neuroscience.

[124]  D. Mastronarde Correlated firing of cat retinal ganglion cells. II. Responses of X- and Y-cells to single quantal events. , 1983, Journal of neurophysiology.

[125]  E. Hartveit,et al.  Functional characteristics of non‐NMDA‐type ionotropic glutamate receptor channels in AII amacrine cells in rat retina , 2002, The Journal of physiology.

[126]  P. Sterling,et al.  Microcircuits for Night Vision in Mouse Retina , 2001, The Journal of Neuroscience.

[127]  B. Connors,et al.  Two networks of electrically coupled inhibitory neurons in neocortex , 1999, Nature.

[128]  D. Condorelli,et al.  Functional Properties of Channels Formed by the Neuronal Gap Junction Protein Connexin36 , 1999, The Journal of Neuroscience.

[129]  S. Bloomfield,et al.  Rod Vision: Pathways and Processing in the Mammalian Retina , 2001, Progress in Retinal and Eye Research.

[130]  A. Moreno,et al.  Gap junction channel gating modulated through protein phosphorylation. , 2007, Progress in biophysics and molecular biology.

[131]  Mario Pieper,et al.  Localization of heterotypic gap junctions composed of connexin45 and connexin36 in the rod pathway of the mouse retina , 2006, The European journal of neuroscience.

[132]  Robert G. Smith,et al.  The AII Amacrine Network: Coupling can Increase Correlated Activity , 1996, Vision Research.

[133]  R. Pourcho,et al.  Calretinin in the cat retina: Colocalizations with other calcium-binding proteins, GABA and glycine , 1997, Visual Neuroscience.

[134]  F. Rieke,et al.  Controlling the Gain of Rod-Mediated Signals in the Mammalian Retina , 2006, The Journal of Neuroscience.

[135]  D. Faber,et al.  Ca2+/calmodulin-dependent kinase II mediates simultaneous enhancement of gap-junctional conductance and glutamatergic transmission. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[136]  H. Kolb,et al.  The synaptic organization of the dopaminergic amacrine cell in the cat retina , 1990, Journal of neurocytology.

[137]  K. Willecke,et al.  Expression and functions of neuronal gap junctions , 2005, Nature Reviews Neuroscience.

[138]  P. Lampe,et al.  Selectivity of Connexin 43 Channels Is Regulated Through Protein Kinase C–Dependent Phosphorylation , 2006, Circulation research.

[139]  R. Masland,et al.  Different Functional Types of Bipolar Cells Use Different Gap-Junctional Proteins , 2005, The Journal of Neuroscience.

[140]  M. Bennett,et al.  Electrical Transmission: A Functional Analysis and Comparison to Chemical Transmission , 2011 .

[141]  Richard H Masland,et al.  Extreme Diversity among Amacrine Cells: Implications for Function , 1998, Neuron.