On-chip light sources for silicon photonics

[1]  A. Seeds,et al.  Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  J. Faist,et al.  Lasing in direct-bandgap GeSn alloy grown on Si , 2015, Nature Photonics.

[3]  Alwyn J. Seeds,et al.  1.3-μm InAs/GaAs quantum-dot laser monolithically grown on Si Substrates operating over 100°C , 2014 .

[4]  A. Rickman The commercialization of silicon photonics , 2014, Nature Photonics.

[5]  John E. Bowers,et al.  Simple Epitaxial Lateral Overgrowth Process as a Strategy for Photonic Integration on Silicon , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[6]  John E. Bowers,et al.  Energy Efficient and Energy Proportional Optical Interconnects for Multi-Core Processors: Driving the Need for On-Chip Sources , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[7]  C. Ning,et al.  Demonstration of net gain in an erbium chloride silicate single nanowire waveguide , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[8]  Paul Crozat,et al.  Integrated germanium optical interconnects on silicon substrates , 2014, Nature Photonics.

[9]  F. Jing,et al.  Rare earth silicates as gain media for silicon photonics [Invited] , 2014 .

[10]  A. Seeds,et al.  1.3µm InAs/GaAs Quantum-Dot Laser Monolithically Grown on Si Substrates Using InAlAs/GaAs Dislocation Filter Layers , 2014, 2014 International Semiconductor Laser Conference.

[11]  Y. Arakawa,et al.  High-density and wide-bandwidth optical interconnects with silicon optical interposers [Invited] , 2014, Photonics Research.

[12]  Yasuhiko Arakawa,et al.  High-density optical interconnects by using silicon photonics , 2014, Photonics West - Optoelectronic Materials and Devices.

[13]  John E. Bowers,et al.  High performance continuous wave 1.3 μm quantum dot lasers on silicon , 2014 .

[14]  Enhanced light emission from Ge micro bridges uniaxially strained beyond 3% , 2013, 10th International Conference on Group IV Photonics.

[15]  M. Myronov,et al.  Strained germanium nanostructures on silicon emitting at >2.2 µm wavelength , 2013, 10th International Conference on Group IV Photonics.

[16]  Direct bandgap germanium nanowires inferred from 5.0% uniaxial tensile strain , 2013, 10th International Conference on Group IV Photonics.

[17]  C. Ning,et al.  Erbium concentration control and optimization in erbium yttrium chloride silicate single crystal nanowires as a high gain material , 2013 .

[18]  Jérôme Faist,et al.  Analysis of enhanced light emission from highly strained germanium microbridges , 2013, Nature Photonics.

[19]  Approaches for a viable Germanium laser: Tensile strain, GeSn alloys, and n-type doping , 2013, 2013 Optical Interconnects Conference.

[20]  Jurgen Michel,et al.  Direct band gap narrowing in highly doped Ge , 2013 .

[21]  Alexander Fang,et al.  Integrated Silicon Photonic Laser Sources for Telecom and Datacom , 2013, 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).

[22]  Large electroluminescence excitation cross section and strong potential gain of erbium in ErYb silicate , 2013 .

[23]  J. Michel,et al.  Analysis of Threshold Current Behavior for Bulk and Quantum-Well Germanium Laser Structures , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[24]  Qi Jiang,et al.  InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si, Ge, and Ge-on-Si Substrates , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[25]  M. Oehme,et al.  Direct bandgap narrowing in Ge LED's on Si substrates. , 2013, Optics express.

[26]  K. Saraswat,et al.  Theoretical Analysis of GeSn Alloys as a Gain Medium for a Si-Compatible Laser , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[27]  Yuji Yamamoto,et al.  Strain analysis in SiN/Ge microstructures obtained via Si-complementary metal oxide semiconductor compatible approach , 2013 .

[28]  van Pj René Veldhoven,et al.  Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate , 2013 .

[29]  Shinsuke Tanaka,et al.  High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology. , 2012, Optics express.

[30]  J. Michel,et al.  High active carrier concentration in n-type, thin film Ge using delta-doping , 2012 .

[31]  Krishna C. Saraswat,et al.  Roadmap to an Efficient Germanium-on-Silicon Laser: Strain vs. n-Type Doping , 2012, IEEE Photonics Journal.

[32]  Wondwosen Metaferia,et al.  III-Vs on Si for photonic applications-A monolithic approach , 2012 .

[33]  Alwyn Seeds,et al.  Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. , 2012, Optics express.

[34]  Lorenzo Pavesi,et al.  Limit to the erbium ions emission in silicon-rich oxide films by erbium ion clustering , 2012 .

[35]  J. Michel,et al.  High phosphorous doped germanium: Dopant diffusion and modeling , 2012 .

[36]  C. Ning,et al.  Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material , 2012 .

[37]  Olivier Jambois,et al.  Polarization strategies to improve the emission of Si-based light sources emitting at 1.55 m , 2012 .

[38]  David A. B. Miller,et al.  A micromachining-based technology for enhancing germanium light emission via tensile strain , 2012, Nature Photonics.

[39]  Deren Yang,et al.  Improved electroluminescence from silicon nitride light emitting devices by localized surface plasmons , 2012 .

[40]  Isabelle Sagnes,et al.  Control of tensile strain in germanium waveguides through silicon nitride layers , 2012 .

[41]  M. Romagnoli,et al.  An electrically pumped germanium laser. , 2012, Optics express.

[42]  Zhiping Zhou,et al.  Optical amplification in Er/Yb silicate slot waveguide. , 2012, Optics letters.

[43]  Yang Wang,et al.  Bonding InGaAsP/ITO/Si Hybrid Laser With ITO as Cathode and Light-Coupling Material , 2012, IEEE Photonics Technology Letters.

[44]  Y. Arakawa,et al.  III-V/Si hybrid photonic devices by direct fusion bonding , 2012, Scientific Reports.

[45]  T. Kamins,et al.  Low-temperature growth of Ge1 − xSnx thin films with strain control by molecular beam epitaxy , 2012 .

[46]  J. Bowers,et al.  Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction , 2012, Light: Science & Applications.

[47]  D. Thomson,et al.  50-Gb/s Silicon Optical Modulator , 2012, IEEE Photonics Technology Letters.

[48]  Jurgen Michel,et al.  Ge-on-Si optoelectronics , 2012 .

[49]  Deren Yang,et al.  Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film , 2012 .

[50]  H. Zimmermann,et al.  Zero-bias 40Gbit/s germanium waveguide photodetector on silicon. , 2012, Optics express.

[51]  P. Pellegrino,et al.  Effect of the annealing treatments on the electroluminescence efficiency of SiO2 layers doped with Si and Er , 2012, Journal of Physics D: Applied Physics.

[52]  James S. Harris,et al.  MBE growth of tensile-strained Ge quantum wells and quantum dots , 2012 .

[53]  G. Duan,et al.  Low-Threshold Heterogeneously Integrated InP/SOI Lasers With a Double Adiabatic Taper Coupler , 2012, IEEE Photonics Technology Letters.

[54]  P. Fauchet,et al.  Electroluminescence from Er doped SiO2/nc-Si multilayers under lateral carrier injection , 2012, 8th IEEE International Conference on Group IV Photonics.

[55]  N. Daldosso,et al.  Copropagating pump and probe experiments on Si-nc in SiO2 rib waveguides doped with Er: The optical role of non-emitting ions , 2011 .

[56]  James S. Harris,et al.  Increased photoluminescence of strain-reduced, high-Sn composition Ge1−xSnx alloys grown by molecular beam epitaxy , 2011 .

[57]  Yasuhiko Arakawa,et al.  High density hybrid integrated light source with a laser diode array on a silicon optical waveguide platform for inter-chip optical interconnection , 2011, 8th IEEE International Conference on Group IV Photonics.

[58]  C. Ning,et al.  Single-crystal erbium chloride silicate nanowires as a Si-compatible light emission material in communication wavelength , 2011 .

[59]  Geza Kurczveil,et al.  Integrated hybrid silicon DFB laser-EAM array using quantum well intermixing. , 2011, Optics express.

[60]  Richard A. Hogg,et al.  Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate , 2011 .

[61]  Tadamasa Kimura,et al.  Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates , 2011 .

[62]  Seng-Tiong Ho,et al.  Silicon/III-V laser with super-compact diffraction grating for WDM applications in electronic-photonic integrated circuits. , 2011, Optics express.

[63]  G. Roelkens,et al.  Heterogeneously integrated InP/SOI laser using double tapered single-mode waveguides through adhesive die to wafer bonding , 2010, 7th IEEE International Conference on Group IV Photonics.

[64]  J. Michel,et al.  Direct demonstration of sensitization at 980nm optical excitation in erbium-ytterbium silicates , 2010, 7th IEEE International Conference on Group IV Photonics.

[65]  H. Atwater,et al.  Achieving optical gain in waveguide-confined nanocluster-sensitized erbium by pulsed excitation , 2010 .

[66]  Rui Li,et al.  Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes , 2010 .

[67]  Richard A. Soref,et al.  Design of an electrically pumped SiGeSn/GeSn/SiGeSn double-heterostructure midinfrared laser , 2010 .

[68]  Di Liang,et al.  Recent progress in lasers on silicon , 2010 .

[69]  Yang Wang,et al.  A Selective-Area Metal Bonding InGaAsP–Si Laser , 2010, IEEE Photonics Technology Letters.

[70]  L. Cerutti,et al.  GaSb-Based Laser, Monolithically Grown on Silicon Substrate, Emitting at 1.55 $\mu$ m at Room Temperature , 2010, IEEE Photonics Technology Letters.

[71]  Namkyoo Park,et al.  Cooperative upconversion and optical gain in ion-beam sputter-deposited Er(x)Y(2-x)SiO(5) waveguides. , 2010, Optics express.

[72]  J. Michel,et al.  Ge-on-Si laser operating at room temperature. , 2010, Optics letters.

[73]  O Jambois,et al.  Towards population inversion of electrically pumped Er ions sensitized by Si nanoclusters. , 2010, Optics express.

[74]  J. Michel,et al.  Toward a Germanium Laser for Integrated Silicon Photonics , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[75]  D. Sadana,et al.  Activation of Implanted n-Type Dopants in Ge Over the Active Concentration of 1 × 1020 cm − 3 Using Coimplantation of Sb and P , 2010 .

[76]  Di Liang,et al.  Electrically-pumped compact hybrid silicon microring lasers for optical interconnects. , 2009, Optics express.

[77]  Anthony J. Kenyon,et al.  Current Transport and Electroluminescence Mechanisms in Thin SiO2 Films Containing Si Nanoclusters-Sensitized Er Ion , 2009 .

[78]  K. Saraswat,et al.  Germanium In Situ Doped Epitaxial Growth on Si for High-Performance $\hbox{n}^{+}/\hbox{p}$-Junction Diode , 2009, IEEE Electron Device Letters.

[79]  Tadamasa Kimura,et al.  Fabrication and characterization of Er silicates on SiO2/Si substrates , 2009 .

[80]  Jurgen Michel,et al.  Direct gap photoluminescence of n-type tensile-strained Ge-on-Si , 2009 .

[81]  Avi Zadok,et al.  Electrically pumped hybrid evanescent Si/InGaAsP lasers. , 2009, Optics letters.

[82]  Jurgen Michel,et al.  Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes. , 2009, Optics letters.

[83]  X. Sun Ge-on-Si light-emitting materials and devices for silicon photonics , 2009 .

[84]  Sebastian Lourdudoss,et al.  Epitaxial lateral overgrowth of InP on Si from nano-openings: Theoretical and experimental indication for defect filtering throughout the grown layer , 2008 .

[85]  Di Liang,et al.  A Distributed Bragg Reflector Silicon Evanescent Laser , 2008, IEEE Photonics Technology Letters.

[86]  F. Priolo,et al.  The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films , 2008 .

[87]  Di Liang,et al.  A distributed feedback silicon evanescent laser. , 2008, Optics express.

[88]  Jurgen Michel,et al.  Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. , 2007, Optics express.

[89]  Maria Miritello,et al.  Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films , 2007 .

[90]  L. Di Cioccio,et al.  Thermal Characterization of Electrically Injected Thin-Film InGaAsP Microdisk Lasers on Si , 2007, Journal of Lightwave Technology.

[91]  R Baets,et al.  Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. , 2007, Optics express.

[92]  J. Bowers,et al.  Electrically pumped hybrid AlGaInAs-silicon evanescent laser. , 2006, Optics express.

[93]  John Kouvetakis,et al.  TIN-BASED GROUP IV SEMICONDUCTORS: New Platforms for Opto- and Microelectronics on Silicon , 2006 .

[94]  L. D. Negro,et al.  Light emission efficiency and dynamics in silicon-rich silicon nitride films , 2006 .

[95]  John Bowers,et al.  Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells. , 2005, Optics express.

[96]  Anthony J. Kenyon,et al.  Erbium in silicon , 2005 .

[97]  Lars Zimmermann,et al.  Hybrid integration of III/V lasers on a silicon-on-insulator (SOI) optical board , 2005 .

[98]  D. D. Cannon,et al.  Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications , 2005 .

[99]  Zetian Mi,et al.  Room-temperature self-organised In0.5Ga0.5As quantum dot laser on silicon , 2005 .

[100]  D. Huffaker,et al.  High quality AlSb bulk material on Si substrates using a monolithic self-assembled quantum dot nucleation layer , 2005 .

[101]  Alexander Fang,et al.  An all-silicon Raman laser , 2005, Nature.

[102]  Yves Campidelli,et al.  Direct growth of GaAs-based structures on exactly (001)-oriented Ge/Si virtual substrates: reduction of the structural defect density and observation of electroluminescence at room temperature under CW electrical injection , 2004 .

[103]  K. Vahala,et al.  Ultralow-threshold erbium-implanted toroidal microlaser on silicon , 2004 .

[104]  Yasuhiko Ishikawa,et al.  Silicidation-induced band gap shrinkage in Ge epitaxial films on Si , 2004 .

[105]  Kerry J. Vahala,et al.  Fiber-coupled erbium microlasers on a chip , 2003 .

[106]  F. Priolo,et al.  Sensitizing properties of amorphous Si clusters on the 1.54-μm luminescence of Er in Si-rich SiO2 , 2003 .

[107]  Yasuhiko Ishikawa,et al.  Strain-induced band gap shrinkage in Ge grown on Si substrate , 2003 .

[108]  Fritz J. Kub,et al.  Improved Low-Temperature Si ­ Si Hydrophilic Wafer Bonding , 2003 .

[109]  Harry L. T. Lee,et al.  Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers , 2003 .

[110]  G. Stemme,et al.  Low temperature full wafer adhesive bonding , 2001 .

[111]  Luca Dal Negro,et al.  Optical gain in silicon nanocrystals , 2000, Nature.

[112]  Dimitri A. Antoniadis,et al.  High quality Ge on Si by epitaxial necking , 2000 .

[113]  Harry A. Atwater,et al.  INTERBAND TRANSITIONS IN SNXGE1-X ALLOYS , 1997 .

[114]  Nobuyoshi Koshida,et al.  Visible electroluminescence from porous silicon , 1992 .

[115]  D. Biegelsen,et al.  Misfit dislocations in GaAs heteroepitaxy on (001) Si , 1990 .

[116]  Van de Walle Cg Band lineups and deformation potentials in the model-solid theory. , 1989 .

[117]  Hadis Morkoç,et al.  Dislocation reduction in epitaxial GaAs on Si(100) , 1986 .

[118]  K. Morizane Antiphase domain structures in GaP and GaAs epitaxial layers grown on Si and Ge , 1977 .

[119]  A. Green,et al.  ELECTRON-IMPACT EXCITATION AND IONIZATION OF ATOMIC OXYGEN. , 1972 .

[120]  R. A. Logan,et al.  Properties of Heavily Doped n‐Type Germanium , 1961 .

[121]  F. Trumbore Solid Solubilities and Electrical Properties of Tin in Germanium Single Crystals , 1956 .