Brain areas involved in the control of speed during a motor sequence of the foot: real movement versus mental imagery.

[1]  Y. Joanette,et al.  Influence of age on the dynamics of fMRI activations during a semantic fluency task. , 2012, Journal of neuroradiology. Journal de neuroradiologie.

[2]  Peter L Strick,et al.  Cerebellar vermis is a target of projections from the motor areas in the cerebral cortex , 2011, Proceedings of the National Academy of Sciences.

[3]  P. Peigneux,et al.  Functional neuroanatomy associated with the expression of distinct movement kinematics in motor sequence learning , 2011, Neuroscience.

[4]  S. Swinnen,et al.  Excitability of the Motor Cortex Ipsilateral to the Moving Body Side Depends on Spatio-Temporal Task Complexity and Hemispheric Specialization , 2011, PloS one.

[5]  Mario Manto,et al.  Reevaluating brain networks activated during mental imagery of finger movements using probabilistic Tensorial Independent Component Analysis (TICA) , 2011, Brain Imaging and Behavior.

[6]  Paul W. Burgess,et al.  Distinct functional connectivity associated with lateral versus medial rostral prefrontal cortex: A meta-analysis , 2010, NeuroImage.

[7]  Thomas Brandt,et al.  Real versus imagined locomotion: A [18F]-FDG PET-fMRI comparison , 2010, NeuroImage.

[8]  John E. Schlerf,et al.  Evidence of a novel somatopic map in the human neocerebellum during complex actions. , 2010, Journal of neurophysiology.

[9]  M. Manto Cerebellar Disorders: Physiology of the cerebellum , 2010 .

[10]  François Chollet,et al.  Transition from rest to movement: Brain correlates revealed by functional connectivity , 2009, NeuroImage.

[11]  Michael D. Greicius,et al.  Distinct Cerebellar Contributions to Intrinsic Connectivity Networks , 2009, NeuroImage.

[12]  K. Zentgraf,et al.  Cognitive motor processes: The role of motor imagery in the study of motor representations , 2009, Brain Research Reviews.

[13]  Xin Di,et al.  Dexterous movement complexity and cerebellar activation: A meta-analysis , 2009, Brain Research Reviews.

[14]  Susan T. Francis,et al.  fMRI analysis of active, passive and electrically stimulated ankle dorsiflexion , 2009, NeuroImage.

[15]  M. Hallett,et al.  Motor planning, imagery, and execution in the distributed motor network: a time-course study with functional MRI. , 2008, Cerebral cortex.

[16]  S. Cramer,et al.  Cortical activation during foot movements: II Effect of movement rate and side , 2008, Neuroreport.

[17]  Timothy J. Ebner,et al.  Cerebellum Predicts the Future Motor State , 2008, The Cerebellum.

[18]  Jordan Grafman,et al.  Damage to the Fronto-Polar Cortex Is Associated with Impaired Multitasking , 2008, PloS one.

[19]  Julien Doyon,et al.  Functional neuroanatomical networks associated with expertise in motor imagery , 2008, NeuroImage.

[20]  P. Haggard,et al.  Dorsal premotor cortex exerts state-dependent causal influences on activity in contralateral primary motor and dorsal premotor cortex. , 2008, Cerebral cortex.

[21]  M. Cincotta,et al.  Neurophysiology of unimanual motor control and mirror movements , 2008, Clinical Neurophysiology.

[22]  Mitsuo Kawato,et al.  Cerebellar Activity Evoked By Common Tool-Use Execution And Imagery Tasks: An Fmri Study , 2007, Cortex.

[23]  L. Jäncke,et al.  Different strategies do not moderate primary motor cortex involvement in mental rotation: a TMS study , 2007, Behavioral and Brain Functions.

[24]  T. Mulder Motor imagery and action observation: cognitive tools for rehabilitation , 2007, Journal of Neural Transmission.

[25]  Iroise Dumontheil,et al.  Function and localization within rostral prefrontal cortex (area 10) , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[26]  Steven C. Cramer,et al.  Effects of motor imagery training after chronic, complete spinal cord injury , 2007, Experimental Brain Research.

[27]  Martin Lotze,et al.  Volition and imagery in neurorehabilitation. , 2006, Cognitive and behavioral neurology : official journal of the Society for Behavioral and Cognitive Neurology.

[28]  Michael J. Martinez,et al.  Cerebral Cortex doi:10.1093/cercor/bhj057 Cerebral Cortex Advance Access published October 12, 2005 The Neural Basis of Human Dance , 2022 .

[29]  M. Lotze,et al.  Motor imagery , 2006, Journal of Physiology-Paris.

[30]  Kristina M. Visscher,et al.  A Core System for the Implementation of Task Sets , 2006, Neuron.

[31]  Steven C. Cramer,et al.  Brain activation during execution and motor imagery of novel and skilled sequential hand movements , 2005, NeuroImage.

[32]  P. Matthews,et al.  Identifying brain regions for integrative sensorimotor processing with ankle movements , 2005, Experimental Brain Research.

[33]  Jean Lorant,et al.  Validation de la traduction française du Movement Imagery Questionnaire-Revised (MIQ-R) , 2004 .

[34]  Martin Wiesmann,et al.  Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging , 2004, NeuroImage.

[35]  John A Agnew,et al.  Left hemisphere specialization for the control of voluntary movement rate , 2004, NeuroImage.

[36]  P. Dechent,et al.  Is the human primary motor cortex involved in motor imagery? , 2004, Brain research. Cognitive brain research.

[37]  Kurt Wiesenfeld,et al.  Neural correlates of the complexity of rhythmic finger tapping , 2003, NeuroImage.

[38]  M. Hallett,et al.  Functional properties of brain areas associated with motor execution and imagery. , 2003, Journal of neurophysiology.

[39]  Stephen M. Smith,et al.  Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. , 2002, Brain : a journal of neurology.

[40]  Markus Schwaiger,et al.  A H2 15O Positron Emission Tomography Study on Mental Imagery of Movement Sequences—The Effect of Modulating Sequence Length and Direction , 2002, NeuroImage.

[41]  Alan C. Evans,et al.  Motor Learning Produces Parallel Dynamic Functional Changes during the Execution and Imagination of Sequential Foot Movements , 2002, NeuroImage.

[42]  E. Naito,et al.  Internally Simulated Movement Sensations during Motor Imagery Activate Cortical Motor Areas and the Cerebellum , 2002, The Journal of Neuroscience.

[43]  T. Sinkjær,et al.  Cerebral functional anatomy of voluntary contractions of ankle muscles in man , 2001, The Journal of physiology.

[44]  S. Kosslyn,et al.  Neural foundations of imagery , 2001, Nature Reviews Neuroscience.

[45]  C. Richards,et al.  Potential role of mental practice using motor imagery in neurologic rehabilitation. , 2001, Archives of physical medicine and rehabilitation.

[46]  M. Jeannerod Neural Simulation of Action: A Unifying Mechanism for Motor Cognition , 2001, NeuroImage.

[47]  J. Decety,et al.  Effect of subjective perspective taking during simulation of action: a PET investigation of agency , 2001, Nature Neuroscience.

[48]  K. Amunts,et al.  Broca's region subserves imagery of motion: A combined cytoarchitectonic and fMRI study , 2000, Human brain mapping.

[49]  J B Poline,et al.  Partially overlapping neural networks for real and imagined hand movements. , 2000, Cerebral cortex.

[50]  L. Jäncke,et al.  Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli. , 2000, Brain research. Cognitive brain research.

[51]  R. Cabeza,et al.  Neural bases of learning and memory: functional neuroimaging evidence , 2000, Current opinion in neurology.

[52]  Chiang-shan Ray Li,et al.  Impairment of motor imagery in putamen lesions in humans , 2000, Neuroscience Letters.

[53]  R. Elliott,et al.  Dissociable functions in the medial and lateral orbitofrontal cortex: evidence from human neuroimaging studies. , 2000, Cerebral cortex.

[54]  J. Decety,et al.  Neural mechanisms subserving the perception of human actions , 1999, Trends in Cognitive Sciences.

[55]  M. Hallett,et al.  Cerebral Processes Related to Visuomotor Imagery and Generation of Simple Finger Movements Studied with Positron Emission Tomography , 1998, NeuroImage.

[56]  J. Annett Motor imagery: Perception or action? , 1995, Neuropsychologia.

[57]  W T Thach,et al.  The cerebellum and the adaptive coordination of movement. , 1992, Annual review of neuroscience.

[58]  L. J. Chapman,et al.  The measurement of foot preference , 1987, Neuropsychologia.