Numerical Dispersive Schemes for the Nonlinear Schrödinger Equation

We consider semidiscrete approximation schemes for the linear Schrodinger equation and analyze whether the classical dispersive properties of the continuous model hold for these approximations. For the conservative finite difference semidiscretization scheme we show that, as the mesh size tends to zero, the semidiscrete approximate solutions lose the dispersion property. This fact is proved by constructing solutions concentrated at the points of the spectrum where the second order derivatives of the symbol of the discrete Laplacian vanish. Therefore this phenomenon is due to the presence of numerical spurious high frequencies. To recover the dispersive properties of the solutions at the discrete level, we introduce two numerical remedies: Fourier filtering and a two-grid preconditioner. For each of them we prove Strichartz-like estimates and a local space smoothing effect, uniform in the mesh size. The methods we employ are based on classical estimates for oscillatory integrals. These estimates allow us to treat nonlinear problems with $L^2$-initial data, without additional regularity hypotheses. We prove the convergence of the two-grid method for nonlinearities that cannot be handled by energy arguments and which, even in the continuous case, require Strichartz estimates.

[1]  R. Glowinski Ensuring well-posedness by analogy; Stokes problem and boundary control for the wave equation , 1992 .

[2]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[3]  G. Ponce,et al.  Introduction to Nonlinear Dispersive Equations , 2009 .

[4]  Enrique Zuazua,et al.  A two-grid approximation scheme for nonlinear Schrödinger equations: dispersive properties and convergence , 2005 .

[5]  Peter Constantin,et al.  Local smoothing properties of dispersive equations , 1988 .

[6]  L. Ignat FULLY DISCRETE SCHEMES FOR THE SCHRÖDINGER EQUATION: DISPERSIVE PROPERTIES , 2007 .

[7]  G. Pólya,et al.  Fonctions entières et intégrales de Fourier multiples , 1936 .

[8]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[9]  T. Tao Nonlinear dispersive equations : local and global analysis , 2006 .

[10]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[11]  Luis Vega,et al.  Small solutions to nonlinear Schrödinger equations , 1993 .

[12]  Luis Vega,et al.  Oscillatory integrals and regularity of dispersive equations , 1991 .

[13]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[14]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[15]  D. Tataru,et al.  STRICHARTZ ESTIMATES FOR A SCHRÖDINGER OPERATOR WITH NONSMOOTH COEFFICIENTS , 2002 .

[16]  E. Zuazua,et al.  Dispersive Properties of Numerical Schemes for Nonlinear Schrödinger Equations , 2005 .

[17]  Robert S. Strichartz,et al.  Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations , 1977 .

[18]  G. Pólya,et al.  Fonctions entières et intégrales de fourier multiples , 1936 .

[19]  J. Ginibre,et al.  The global Cauchy problem for the nonlinear Schrodinger equation revisited , 1985 .

[20]  Mark J. Ablowitz,et al.  Nonlinear differential−difference equations , 1975 .

[21]  Dispersive properties of a viscous numerical scheme for the Schrodinger equation Proprietes dispersives d'un schema numer´ique visqueux pour l'´equation de Schrodinger , 2005 .

[22]  M. Nixon The Discretized Generalized Korteweg-de Vries Equation with Fourth Order Nonlinearity , 2003 .

[23]  A. Magyar,et al.  Discrete analogues in harmonic analysis: Spherical averages , 2002 .

[24]  T. Tao,et al.  Endpoint Strichartz estimates , 1998 .

[25]  P. Kevrekidis,et al.  Asymptotic behaviour of small solutions for the discrete nonlinear Schrödinger and Klein–Gordon equations , 2004, nlin/0409009.

[26]  小澤 徹,et al.  Nonlinear dispersive equations , 2006 .

[27]  A. Kiselev,et al.  Maximal Functions Associated to Filtrations , 2001 .

[28]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[29]  J. Bowles,et al.  Fourier Analysis of Numerical Approximations of Hyperbolic Equations , 1987 .

[30]  Y. Tsutsumi L$^2$-Solutions for Nonlinear Schrodinger Equations and Nonlinear Groups , 1985 .

[31]  A. Mielke Macroscopic Behavior of Microscopic Oscillations in Harmonic Lattices via Wigner-Husimi Transforms , 2006 .