Fractionation of geochemical twins (Zr/Hf, Nb/Ta and Y/Ho) and HREE-enrichment during magmatic and metamorphic processes in peralkaline nepheline syenites from Norra Kärr (Sweden)

[1]  D. Honn,et al.  Modification of a rare-earth element deposit by low-temperature partial melting during metamorphic overprinting: Norra Kärr alkaline complex, southern Sweden , 2020 .

[2]  L. France,et al.  Trace element partitioning between clinopyroxene and alkaline magmas: parametrization and role of M1 site on HREE enrichment in clinopyroxenes , 2020, Contributions to Mineralogy and Petrology.

[3]  J. Stix,et al.  Clinopyroxene/Melt Trace Element Partitioning in Sodic Alkaline Magmas , 2019, Journal of Petrology.

[4]  A. Finch,et al.  Structural state of rare earth elements in eudialyte-group minerals , 2019, Mineralogical Magazine.

[5]  A. Finch,et al.  Hydrothermal Alteration of Eudialyte-Hosted Critical Metal Deposits: Fluid Source and Implications for Deposit Grade , 2019, Minerals.

[6]  T. Nielsen,et al.  Bulk and Mush Melt Evolution in Agpaitic Intrusions: Insights from Compositional Zoning in Eudialyte, Ilímaussaq Complex, South Greenland , 2018 .

[7]  B. Walter,et al.  Multi-reservoir fluid mixing processes in rift-related hydrothermal veins, Schwarzwald, SW-Germany , 2018 .

[8]  A. Williams-Jones,et al.  Magmatic and Hydrothermal Controls on the Mineralogy of the Basal Zone, Nechalacho REE-Nb-Zr Deposit, Canada , 2017 .

[9]  T. Andersen,et al.  Magmatic age of rare-earth element and zirconium mineralisation at the Norra Kärr alkaline complex, southern Sweden, determined by U-Pb and Lu-Hf isotope analyses of metasomatic zircon and eudialyte , 2017 .

[10]  M. Marks,et al.  A global review on agpaitic rocks , 2017 .

[11]  J. Gutzmer,et al.  Distinguishing Magmatic and Metamorphic Processes in Peralkaline Rocks of the Norra Kärr Complex (Southern Sweden) Using Textural and Compositional Variations of Clinopyroxene and Eudialyte-group Minerals , 2017 .

[12]  A. K. Sen,et al.  Magmatic, hydrothermal and subsolidus evolution of the agpaitic nepheline syenites of the Sushina Hill Complex, India: implications for the metamorphism of peralkaline syenites , 2016, Mineralogical Magazine.

[13]  F. Wall,et al.  From mantle to critical zone: A review of large and giant sized deposits of the rare earth elements , 2016 .

[14]  A. Williams-Jones,et al.  Petrogenesis of the Nechalacho Layered Suite, Canada: Magmatic Evolution of a REE–Nb-rich Nepheline Syenite Intrusion , 2016 .

[15]  T. Nielsen,et al.  Zirconosilicates in the kakortokites of the Ilímaussaq complex, South Greenland: Implications for fluid evolution and high-field-strength and rare-earth element mineralization in agpaitic systems , 2016, Mineralogical Magazine.

[16]  J. Gutzmer,et al.  Electron Probe Microanalysis of REE in Eudialyte Group Minerals: Challenges and Solutions , 2015, Microscopy and Microanalysis.

[17]  S. Jaireth,et al.  Geological setting and resources of the major rare-earth-element deposits in Australia , 2014 .

[18]  Frances Wall,et al.  Rare Earth Elements , 2013, Encyclopedia of Geology.

[19]  T. Andersen,et al.  Three Compositional Varieties of Rare-Earth Element Ore: Eudialyte-Group Minerals from the Norra Kärr Alkaline Complex, Southern Sweden , 2013 .

[20]  L. Horváth,et al.  The magmatic to hydrothermal evolution of the intrusive Mont Saint-Hilaire Complex: Insights into the late-stage evolution of peralkaline rocks , 2011 .

[21]  L. Brander The Mesoproterozoic Hallandian event - a region-scale orogenic event in the Fennoscandian Shield , 2011 .

[22]  M. Marks,et al.  The Mineralogical Diversity of Alkaline Igneous Rocks: Critical Factors for the Transition from Miaskitic to Agpaitic Phase Assemblages , 2011 .

[23]  D. Jacob,et al.  The compositional variability of eudialyte-group minerals , 2011, Mineralogical Magazine.

[24]  M. Marks,et al.  A fast and easy-to-use approach to cation site assignment for eudialyte-group minerals , 2010 .

[25]  U. Söderlund,et al.  Mesoproterozoic (1.47–1.44 Ga) orogenic magmatism in Fennoscandia; Baddeleyite U–Pb dating of a suite of massif-type anorthosite in S. Sweden , 2009 .

[26]  M. Marks,et al.  Chemical and physical evolution of the ‘lower layered sequence’ from the nepheline syenitic Ilímaussaq intrusion, South Greenland: Implications for the origin of magmatic layering in peralkaline felsic liquids , 2008 .

[27]  D. Jacob,et al.  The effect of titanite and other HFSE-rich mineral (Ti-bearing andradite, zircon, eudialyte) fractionation on the geochemical evolution of silicate melts , 2008 .

[28]  F. Cámara,et al.  From structure topology to chemical composition. VIII. Titanium silicates: the crystal chemistry of mosandrite from type locality of Låven (Skådön), Langesundsfjorden, Larvik, Vestfold, Norway , 2008 .

[29]  M. Marks,et al.  The Alkaline–Peralkaline Tamazeght Complex, High Atlas Mountains, Morocco: Mineral Chemistry and Petrological Constraints for Derivation from a Compositionally Heterogeneous Mantle Source , 2008 .

[30]  K. Jochum,et al.  Validation of LA-ICP-MS trace element analysis of geological glasses using a new solid-state 193 nm Nd : YAG laser and matrix-matched calibration , 2007 .

[31]  Ramiza K. Rastsvetaeva,et al.  Structural mineralogy of the eudialyte group: A review , 2007 .

[32]  A. Chakhmouradian High-field-strength elements in carbonatitic rocks: Geochemistry, crystal chemistry and significance for constraining the sources of carbonatites , 2006 .

[33]  F. Bea,et al.  Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: An example from the Spirit Mountain batholith, Nevada , 2006, Mineralogical Magazine.

[34]  K. Jochum,et al.  Improvement of in situ Pb isotope analysis by LA-ICP-MS using a 193 nm Nd:YAG laser , 2006 .

[35]  F. Bea,et al.  A LA–ICP–MS EVALUATION OF Zr RESERVOIRS IN COMMON CRUSTAL ROCKS: IMPLICATIONS FOR Zr AND Hf GEOCHEMISTRY, AND ZIRCON-FORMING PROCESSES , 2006 .

[36]  M. Marks,et al.  Trace element variations in clinopyroxene and amphibole from alkaline to peralkaline syenites and granites: implications for mineral?melt trace-element partitioning , 2004 .

[37]  O. V. Breemen,et al.  Geology and U–Pb geochronology of the Kipawa Syenite Complex — a thrust related alkaline pluton — and adjacent rocks in the Grenville Province of western Quebec , 2004 .

[38]  P. Thurston,et al.  Images of a lower-crustal oceanic slab: Direct evidence for tectonic accretion in the Archean western Superior province , 2003 .

[39]  Giovanni Ferraris,et al.  THE NOMENCLATURE OF EUDIALYTE-GROUP MINERALS , 2003 .

[40]  H. Keppler,et al.  Melt composition control of Zr/Hf fractionation in magmatic processes , 2002 .

[41]  M. Whitehouse,et al.  Zircon geochronology in polymetamorphic gneisses in the Sveconorwegian orogen, SW Sweden: ion microprobe evidence for 1.46-1.42 and 0.98-0.96 Ga reworking , 2002 .

[42]  H. Sørensen,et al.  Geochemical overview of the Ilímaussaq alkaline complex, South Greenland , 2001 .

[43]  F. Bea,et al.  Kola alkaline Province in the Paleozoic: evaluation of primary mantle magma composition and magma generation conditions , 2001 .

[44]  D. Canil,et al.  OLIVINE-LIQUID PARTITIONING OF VANADIUM AND OTHER TRACE ELEMENTS, WITH APPLICATIONS TO MODERN AND ANCIENT PICRITES , 2001 .

[45]  S. Salvi,et al.  Hydrothermal Mobilization of High Field Strength Elements in Alkaline Igneous Systems: Evidence from the Tamazeght Complex (Morocco) , 2000 .

[46]  B. Wood,et al.  A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt , 1997 .

[47]  M. Bau Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect , 1996 .

[48]  P. Dulski,et al.  Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids , 1995 .

[49]  A. Cruden,et al.  Kinematics of a major fan-like structure in the eastern part of the Sveconorwegian orogen, Baltic Shield, south-central Sweden , 1994 .

[50]  U. Kramm,et al.  Nd and Sr isotope signatures of the Khibina and Lovozero agpaitic centres, Kola Alkaline province, Russia , 1994 .

[51]  N. Rock,et al.  The International Mineralogical Association (IMA/CNMMN) pyroxene nomenclature scheme: Computerization and its consequences , 1990 .

[52]  W. McDonough,et al.  Compositional constraints on the continental lithospheric mantle from trace elements in spinel peridotite xenoliths , 1989, Nature.

[53]  J. McLelland Crustal growth associated with anorogenic, mid-Proterozoic anorthosite massifs in northeastern North America , 1989 .

[54]  Nobuo Morimoto,et al.  Nomenclature of Pyroxenes , 1988, Mineralogical Magazine.

[55]  G. Åberg Middle Proterozoic anorogenic magmatism in Sweden and worldwide , 1988 .

[56]  H. Crecraft,et al.  Partition coefficients for trace elements in silicic magmas , 1985 .

[57]  K. Currie,et al.  An Application of Multicomponent Solution Theory to Jadeitic Pyroxenes , 1976, The Journal of Geology.

[58]  S. Karup-moller,et al.  Eudialyte decomposition minerals with new hitherto undescribed phases from the Ilímaussaq complex, South Greenland , 2016 .

[59]  Erik Jonsson,et al.  Europe's rare earth element resource potential: An overview of REE metallogenetic provinces and their geodynamic setting , 2016 .

[60]  R. Mitchell Primary and secondary niobium mineral deposits associated with carbonatites , 2015 .

[61]  L. Kogarko Fractionation of zirconium in pyroxenes of alkaline magmas , 2014, Geochemistry International.

[62]  S. Karup-moller,et al.  New data on eudialyte decomposition minerals from kakortokites and associated pegmatites of the Ilimaussaq complex, South Greenland , 2013 .

[63]  N. Halden,et al.  Trace-element composition and zoning in clinopyroxene- and amphibole-group minerals: Implications for element partitioning and evolution of carbonatites , 2012 .

[64]  J. G. Arth Behavior of trace elements during magmatic processes - A summary of theoretical models and their applications , 1976 .