A multiplicative analog of the weyl algebra
暂无分享,去创建一个
[1] S. P. Smith. An example of a ring morita equivalent to the Weyl algebra A1 , 1981 .
[2] J. C. McConnell. On the global dimension of some rings , 1977 .
[3] A. Shamsuddin. A Note on a Class of Simple Noetherian Domains , 1977 .
[4] J. T. Stafford. Completely Faithful Modules and Ideals of Simple Noetherian Rings , 1976 .
[5] V. Arun. Relative krull dimension and prime ideals in right noetherian rings , 1974 .
[6] J. Björk. The global homological dimension of some algebras of differential operators , 1972 .
[7] Jan-Erik Roos. Détermination de la dimension homologique globale des algèbres de Weyl. (French) , 1972 .
[8] D. B. Webber. Ideals and modules of simple Noetherian hereditary rings , 1970 .
[9] A. V. Jategaonkar. Left Principal Ideal Rings , 1970 .
[10] K. Fields. On the global dimension of skew polynomial rings , 1969 .
[11] Irving Kaplansky,et al. Fields and rings , 1969 .
[12] Hyman Bass,et al. Algebraic K-theory , 1968 .
[13] Y. Nouazé,et al. Id?aux premiers de l'alg?bre enveloppante d'une alg?bre de Lie nilpotente , 1967 .
[14] G. Rinehart. Note on the global dimension of a certain ring , 1962 .