On Bounded Semilinear Languages, Counter Machines, and Finite-Index ET0L
暂无分享,去创建一个
[1] Seymour Ginsburg,et al. Algebraic and Automata Theoretic Properties of Formal Languages , 1975 .
[2] Seymour Ginsburg,et al. The mathematical theory of context free languages , 1966 .
[3] Oscar H. Ibarra,et al. The effect of end-markers on counter machines and commutativity , 2016, Theor. Comput. Sci..
[4] Luca Breveglieri,et al. Multi-Push-Down Languages and Grammars , 1996, Int. J. Found. Comput. Sci..
[5] Tero Harju,et al. Some Decision Problems Concerning Semilinearity and Commutation , 2002, J. Comput. Syst. Sci..
[6] Oscar H. Ibarra,et al. Characterizations of Bounded semilinear Languages by One-Way and Two-Way Deterministic Machines , 2012, Int. J. Found. Comput. Sci..
[7] Michael A. Harrison,et al. Introduction to formal language theory , 1978 .
[8] Brenda S. Baker,et al. Reversal-Bounded Multipushdown Machines , 1974, J. Comput. Syst. Sci..
[9] Brigitte Rozoy. The Dyck Language D'_1^* Is Not Generated by Any Matric Grammar of Finite Index , 1987, Inf. Comput..
[10] Oscar H. Ibarra,et al. Reversal-Bounded Multicounter Machines and Their Decision Problems , 1978, JACM.
[11] Grzegorz Rozenberg,et al. On ET0L Systems of Finite Index , 1978, Inf. Control..
[12] Sheila A. Greibach. Remarks on Blind and Partially Blind One-Way Multicounter Machines , 1978, Theor. Comput. Sci..
[13] Rainer Parchmann,et al. Linear Indexed Languages , 1984, Theor. Comput. Sci..
[14] Grzegorz Rozenberg,et al. On the Effect of the Finite Index Restriction on Several Families of Grammars , 1978, Inf. Control..