The bifurcation lemma for strong properties in the inverse eigenvalue problem of a graph
暂无分享,去创建一个
[1] Yves Colin de Verdière,et al. On a new graph invariant and a criterion for planarity , 1991, Graph Structure Theory.
[2] Kevin N. Vander Meulen,et al. Potentially Nilpotent Patterns and the Nilpotent-Jacobian Method , 2010 .
[3] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[4] J. M. Masqué,et al. Analysis and algebra on differentiable manifolds , 2009 .
[5] V. Arnold. ON MATRICES DEPENDING ON PARAMETERS , 1971 .
[6] B. Shader,et al. The nilpotent-centralizer method for spectrally arbitrary patterns , 2013 .
[7] Yves Colin de Verdière,et al. Sur un nouvel invariant des graphes et un critère de planarité , 1990, J. Comb. Theory, Ser. B.
[8] Shaun M. Fallat,et al. Generalizations of the Strong Arnold Property and the Minimum Number of Distinct Eigenvalues of a Graph , 2015, Electron. J. Comb..
[9] Warren E. Ferguson,et al. The construction of Jacobi and periodic Jacobi matrices with prescribed spectra , 1980 .
[10] T. Laffey. Extreme nonnegative matrices , 1998 .
[11] Hein van der Holst,et al. The inertia set of a signed graph , 2012 .
[12] S. Parter. On the Eigenvalues and Eigenvectors of a Class of Matrices , 1960 .
[13] Shaun M. Fallat,et al. The inverse eigenvalue problem of a graph: Multiplicities and minors , 2017, J. Comb. Theory, Ser. B.
[14] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[15] D. Olesky,et al. Spectrally arbitrary patterns , 2000 .
[16] Raphael Loewy,et al. The inverse inertia problem for graphs: Cut vertices, trees, and a counterexample , 2009 .
[17] Gorjan Alagic,et al. #p , 2019, Quantum information & computation.
[18] Gerry Wiener. Spectral multiplicity and splitting results for a class of qualitative matrices , 1984 .