Parameter estimation and data analysis for stable distributions

It is now practical to use maximum likelihood estimation to estimate stable parameters and to give large sample confidence regions. Just as important as estimating parameters is assessing whether or not a given sample is stably distributed. Diagnostics for this purpose are demonstrated. Several methods of estimating the spectral measure of a multivariate stable distribution are described, and diagnostics for assessing stability of a multivariate sample are also demonstrated.

[1]  Douglas B. Williams,et al.  Characteristic function based estimation of stable distribution parameters , 1998 .

[2]  John P. Nolan,et al.  Calculation of multidimensional stable densities , 1995 .

[3]  Anna K. Panorska,et al.  Data analysis for heavy tailed multivariate samples , 1997 .

[4]  John P. Nolan,et al.  Parameterizations and modes of stable distributions , 1998 .

[5]  Chrysostomos L. Nikias,et al.  Fast estimation of the parameters of alpha-stable impulsive interference , 1996, IEEE Trans. Signal Process..

[6]  Chrysostomos L. Nikias,et al.  On blind channel identification for impulsive signal environments , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[7]  C. L. Nikias,et al.  Signal processing with alpha-stable distributions and applications , 1995 .

[8]  J. L. Nolan,et al.  Numerical calculation of stable densities and distribution functions: Heavy tails and highly volatil , 1997 .

[9]  A. Weron,et al.  Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes , 1993 .

[10]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[11]  J. Nolan,et al.  Approximation of Multidimensional Stable Densities , 1993 .

[12]  J. R. Michael The stabilized probability plot , 1983 .

[13]  D. Buckle Bayesian Inference for Stable Distributions , 1995 .

[14]  J. McCulloch,et al.  Simple consistent estimators of stable distribution parameters , 1986 .

[15]  E. Fama,et al.  Parameter Estimates for Symmetric Stable Distributions , 1971 .

[16]  I. A. Koutrouvelis An iterative procedure for the estimation of the parameters of stable laws , 1981 .

[17]  Ioannis A. Koutrouvelis,et al.  Regression-Type Estimation of the Parameters of Stable Laws , 1980 .