A simple proof of second-order strong normalization with permutative conversions

Abstract A simple and complete proof of strong normalization for first- and second-order intuitionistic natural deduction including disjunction, first-order existence and permutative conversions is given. The paper follows the Tait–Girard approach via computability predicates (reducibility) and saturated sets. Strong normalization is first established for a set of conversions of a new kind, then deduced for the standard conversions. Difficulties arising for disjunction are resolved using a new logic where disjunction is restricted to atomic formulas.

[1]  Ralph Matthes,et al.  Non-strictly positive fixed points for classical natural deduction , 2005, Ann. Pure Appl. Log..

[2]  J. Girard,et al.  Proofs and types , 1989 .

[3]  A. Troelstra Metamathematical investigation of intuitionistic arithmetic and analysis , 1973 .

[4]  Daniel Leivant,et al.  Strong normalization for arithmetic , 1975 .

[5]  W. Tait A realizability interpretation of the theory of species , 1975 .

[6]  William A. Howard,et al.  The formulae-as-types notion of construction , 1969 .

[7]  William W. Tait The completeness of Heyting first-order logic , 2003, J. Symb. Log..

[8]  P. Martin-Löf Hauptsatz for the Theory of Species , 1971 .

[9]  J. Gallier On Girard's "Candidats de Reductibilité" , 1989 .

[10]  Philippe de Groote,et al.  On the Strong Normalisation of Intuitionistic Natural Deduction with Permutation-Conversions , 2002, Inf. Comput..

[11]  J. Fenstad Proceedings of the Second Scandinavian Logic Symposium , 1971 .

[12]  J. Y. Girard,et al.  Interpretation fonctionelle et elimination des coupures dans l'aritmetique d'ordre superieur , 1972 .

[13]  René David,et al.  A short proof of the strong normalization of classical natural deduction with disjunction , 2003, Journal of Symbolic Logic.

[14]  D. Prawitz Ideas and Results in Proof Theory , 1971 .

[15]  Piergiorgio Odifreddi,et al.  Logic and computer science , 1990 .

[16]  J. Girard Une Extension De ĽInterpretation De Gödel a ĽAnalyse, Et Son Application a ĽElimination Des Coupures Dans ĽAnalyse Et La Theorie Des Types , 1971 .

[17]  Helmut Schwichtenberg,et al.  Basic proof theory , 1996, Cambridge tracts in theoretical computer science.

[18]  Ralph Matthes,et al.  Short Proofs of Normalization , 2002 .

[19]  J. Roger Hindley,et al.  To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism , 1980 .

[20]  Grigori Mints Existential Instantiation and Strong Normalization , 1997, LFCS.