The Evolution of L and T Dwarfs in Color-Magnitude Diagrams

We present new evolution sequences for very low mass stars, brown dwarfs, and giant planets and use them to explore a variety of influences on the evolution of these objects. While the predicted adiabatic evolution of luminosity with time is very similar to results of previous work, the remaining disagreements reveal the magnitude of current uncertainty in brown dwarf evolution theory. We discuss the sources of those differences and argue for the importance of the surface boundary condition provided by atmosphere models including clouds. The L- to T-type ultracool dwarf transition can be accommodated within the Ackerman and Marley cloud model by varying the cloud sedimentation parameter. We develop a simple model for the evolution across the L/T transition. By combining the evolution calculation and our atmosphere models, we generate colors and magnitudes of synthetic populations of ultracool dwarfs in the field and in Galactic clusters. We focus on near-infrared color-magnitude diagrams (CMDs) and on the nature of the “second parameter” that is responsible for the scatter of colors along the Teff sequence. Instead of a single second parameter we find that variations in metallicity and cloud parameters, unresolved binaries, and possibly a relatively young population all play a role in defining the spread of brown dwarfs along the cooling sequence. We also find that the transition from cloudy L dwarfs to cloudless T dwarfs slows down the evolution and causes a pileup of substellar objects in the transition region, in contradiction with previous studies. However, the same model is applied to the Pleiades brown dwarf sequence with less success. Taken at face value, the present Pleiades data suggest that the L/T transition occurs at lower Teff for lower gravity objects, such as those found in young Galactic clusters. The simulated populations of brown dwarfs also reveal that the phase of deuterium burning produces a distinctive feature in CMDs that should be detectable in ~50-100 Myr old clusters.

[1]  M. Meyer,et al.  An Electronic Publication Dedicated to Early Stellar Evolution and Molecular Clouds Evidence for a Turnover in the Initial Mass Function of Low–mass Stars and Substellar Objects: Analysis from an Ensemble of Young Clusters , 2022 .

[2]  Michael J. Ireland,et al.  Keck Laser Guide Star Adaptive Optics Monitoring of 2MASS J15344984–2952274AB: First Dynamical Mass Determination of a Binary T Dwarf , 2008, 0807.0238.

[3]  L. Casagrande,et al.  M dwarfs: effective temperatures, radii and metallicities , 2008, 0806.2471.

[4]  Michael C. Liu,et al.  HN Peg B: A Test of Models of the L to T Dwarf Transition , 2008, 0804.1386.

[5]  G. Belle 14th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun , 2008 .

[6]  Royal Observatory of Edinburgh,et al.  Consistent Simulations of Substellar Atmospheres and Nonequilibrium Dust Cloud Formation , 2008, 0801.3733.

[7]  F. Martinache,et al.  Dynamical Mass of GJ 802B: A Brown Dwarf in a Triple System , 2008, 0801.1525.

[8]  M. Marley,et al.  Line and Mean Opacities for Ultracool Dwarfs and Extrasolar Planets , 2007, 0706.2374.

[9]  W. Vacca,et al.  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 ATMOSPHERIC PARAMETERS OF FIELD L AND T DWARFS 1 , 2022 .

[10]  Dagny L. Looper,et al.  Clouds, Gravity, and Metallicity in Blue L Dwarfs: The Case of 2MASS J11263991–5003550 , 2007, 0710.1123.

[11]  R. J. Wainscoat,et al.  Space Velocities of L- and T-Type Dwarfs , 2007, 0706.0784.

[12]  Russel J. White,et al.  Multiepoch Radial Velocity Observations of L Dwarfs , 2007, 0705.3901.

[13]  Michael C. Liu,et al.  Physical and Spectral Characteristics of the T8 and Later Type Dwarfs , 2007, 0705.2602.

[14]  R. F. Jameson,et al.  Proper motion L and T dwarf candidate members of the Pleiades , 2007, 0704.1578.

[15]  John C. Wilson,et al.  Moderate-Resolution Spitzer Infrared Spectrograph Observations of M, L, and T Dwarfs , 2007, astro-ph/0701398.

[16]  Michael C. Liu,et al.  The Late-T Dwarf Companion to the Exoplanet Host Star HD 3651: A New Benchmark for Gravity and Metallicity Effects in Ultracool Spectra , 2007, astro-ph/0701111.

[17]  M. Cushing,et al.  Physical Parameters of Two Very Cool T Dwarfs , 2006, astro-ph/0611062.

[18]  D. Saumon,et al.  3.6-7.9 μm Photometry of L and T Dwarfs and the Prevalence of Vertical Mixing in their Atmospheres , 2006, astro-ph/0610214.

[19]  M. T. Schuster,et al.  Discovery of Two T Dwarf Companions with the Spitzer Space Telescope , 2006, astro-ph/0609464.

[20]  A. Burgasser Binaries and the L Dwarf/T Dwarf Transition , 2006, astro-ph/0611505.

[21]  C. Bailer-Jones,et al.  Pleiades low-mass brown dwarfs: the cluster L dwarf sequence , 2006, astro-ph/0608255.

[22]  L. Hillenbrand,et al.  HD 203030B: An Unusually Cool Young Substellar Companion near the L/T Transition , 2006, astro-ph/0607514.

[23]  A. Burrows,et al.  Atomic and Molecular Opacities for Brown Dwarf and Giant Planet Atmospheres , 2006, astro-ph/0607211.

[24]  M. Cushing,et al.  Ammonia as a Tracer of Chemical Equilibrium in the T7.5 Dwarf Gliese 570D , 2006, astro-ph/0605563.

[25]  I. Reid,et al.  Hubble Space Telescope NICMOS Observations of T Dwarfs: Brown Dwarf Multiplicity and New Probes of the L/T Transition , 2006, astro-ph/0605577.

[26]  David A. Golimowski,et al.  SDSS J1534+1615AB: A Novel T Dwarf Binary Found with Keck Laser Guide Star Adaptive Optics and the Potential Role of Binarity in the L/T Transition , 2006, astro-ph/0605037.

[27]  Jr.,et al.  Chemistry of Low Mass Substellar Objects , 2006, astro-ph/0601381.

[28]  A. Burrows,et al.  L and T Dwarf Models and the L to T Transition , 2005, astro-ph/0509066.

[29]  F. Allard,et al.  Theoretical profiles of light alkali resonance lines for brown dwarf atmosphere conditions , 2005 .

[30]  J. Davy Kirkpatrick,et al.  New spectral types L and T , 2005 .

[31]  Michael C. Liu,et al.  Kelu-1 Is a Binary L Dwarf: First Brown Dwarf Science from Laser Guide Star Adaptive Optics , 2005, astro-ph/0508082.

[32]  D. E. Trilling,et al.  The Substellar Mass Function: A Bayesian Approach , 2005, astro-ph/0502189.

[33]  S. Percival,et al.  The distance to the Pleiades: Main sequence fitting in the near infrared , 2004, astro-ph/0409362.

[34]  M. Cushing,et al.  Spitzer Infrared Spectrograph (IRS) Observations of M, L, and T Dwarfs , 2004 .

[35]  A. Burgasser T Dwarfs and the Substellar Mass Function. I. Monte Carlo Simulations , 2004, astro-ph/0407624.

[36]  R. Jayawardhana,et al.  The Substellar Population of the Young Cluster λ Orionis , 2004, astro-ph/0404072.

[37]  D. Saumon,et al.  Shock Compression of Deuterium and the Interiors of Jupiter and Saturn , 2004, astro-ph/0403393.

[38]  J. Brinkmann,et al.  L′ and M′ Photometry of Ultracool Dwarfs , 2004, astro-ph/0402475.

[39]  et al,et al.  Near-Infrared Photometry and Spectroscopy of L and T Dwarfs: The Effects of Temperature, Clouds, and Gravity , 2004, astro-ph/0402451.

[40]  J. Brinkmann,et al.  Preliminary Parallaxes of 40 L and T Dwarfs from the US Naval Observatory Infrared Astrometry Program , 2004, astro-ph/0402272.

[41]  Tucson,et al.  ε Indi Ba,Bb: The nearest binary brown dwarf , 2003, astro-ph/0309256.

[42]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[43]  I. Reid,et al.  Luminosity Functions of Young Clusters: Modeling the Substellar Mass Regime , 2003, astro-ph/0306316.

[44]  A. Burgasser,et al.  Infrared Parallaxes for Methane T Dwarfs , 2003, astro-ph/0304339.

[45]  F. Allard,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003, astro-ph/0302293.

[46]  T. Nakajima,et al.  Transition from L to T Dwarfs on the Color-Magnitude Diagram , 2003, astro-ph/0302169.

[47]  France,et al.  Brown dwarfs in the Pleiades cluster: Clues to the substellar mass function , , 2002, astro-ph/0212571.

[48]  K. Lodders Titanium and Vanadium Chemistry in Low-Mass Dwarf Stars , 2002 .

[49]  J. Cuillandre,et al.  The lower mass function of young open clusters , 2002, astro-ph/0209178.

[50]  California Institute of Technology,et al.  A substellar mass function for Alpha Persei , 2002, astro-ph/0209032.

[51]  A. Borysow,et al.  Collision-induced absorption coefficients of H2 pairs at temperatures from 60 K to 1000 K , 2002 .

[52]  I. Reid,et al.  Astrometry and Photometry for Cool Dwarfs and Brown Dwarfs , 2002, astro-ph/0205050.

[53]  D. Saumon,et al.  Evidence of Cloud Disruption in the L/T Dwarf Transition , 2002, astro-ph/0205051.

[54]  T. Tsuji Dust in the Photospheric Environment: Unified Cloudy Models of M, L, and T Dwarfs , 2002, astro-ph/0204401.

[55]  B. Fegley,et al.  Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars: I. Carbon, Nitrogen, and Oxygen , 2002 .

[56]  F. Allard,et al.  Evolutionary models for low-mass stars and brown dwarfs: uncertainties and limits at very young ages , 2001, astro-ph/0111385.

[57]  et al,et al.  Infrared Photometry of Late-M, L, and T Dwarfs , 2001, astro-ph/0108435.

[58]  Xiaohui Fan,et al.  Clouds and Chemistry: Ultracool Dwarf Atmospheric Properties from Optical and Infrared Colors , 2001, astro-ph/0105438.

[59]  G. Chabrier The Galactic Disk Mass Budget. II. Brown Dwarf Mass Function and Density , 2001, astro-ph/0110024.

[60]  G. Chabrier The Galactic disk mass-budget : I. stellar mass-function and density , 2001, astro-ph/0107018.

[61]  F. Allard,et al.  The Limiting Effects of Dust in Brown Dwarf Model Atmospheres , 2001, astro-ph/0104256.

[62]  Andrew S. Ackerman,et al.  Precipitating Condensation Clouds in Substellar Atmospheres , 2001, astro-ph/0103423.

[63]  D. Saumon,et al.  Infrared Observations and Modeling of One of the Coolest T Dwarfs: Gliese 570D , 2001, astro-ph/0103187.

[64]  U. Jørgensen,et al.  High-temperature (1000–7000 K) collision-induced absorption of H2 pairs computed from the first principles, with application to cool and dense stellar atmospheres , 2001 .

[65]  F. Allard,et al.  Deuterium Burning in Substellar Objects , 2000 .

[66]  Gibor Basri,et al.  Observations of Brown Dwarfs , 2000 .

[67]  F. Allard,et al.  TiO and H2O Absorption Lines in Cool Stellar Atmospheres , 2000, astro-ph/0008465.

[68]  I. Baraffe,et al.  Theory of Low-Mass Stars and Substellar Objects , 2000 .

[69]  F. Allard,et al.  Evolutionary Models for Very Low-Mass Stars and Brown Dwarfs with Dusty Atmospheres , 2000, astro-ph/0005557.

[70]  D. Saumon,et al.  Molecular Abundances in the Atmosphere of the T Dwarf Gl 229B , 2000, astro-ph/0003353.

[71]  A. Burrows,et al.  The Near-Infrared and Optical Spectra of Methane Dwarfs and Brown Dwarfs , 1999, astro-ph/9908078.

[72]  P. Aguer,et al.  A compilation of charged-particle induced thermonuclear reaction rates , 1999 .

[73]  K. Lodders Alkali Element Chemistry in Cool Dwarf Atmospheres , 1999 .

[74]  C P McKay,et al.  Thermal structure of Uranus' atmosphere. , 1999, Icarus.

[75]  ApJ, in press , 1999 .

[76]  R. Rebolo,et al.  A New Pleiades Member at the Lithium Substellar Boundary , 1998, physics/9803026.

[77]  T. Guillot,et al.  A Nongray Theory of Extrasolar Giant Planets and Brown Dwarfs , 1997, astro-ph/9705201.

[78]  H. Jones,et al.  Spectral Evidence for Dust in Late-Type M Dwarfs , 1997, astro-ph/9702108.

[79]  K. Lodders,et al.  Atmospheric Chemistry of the Brown Dwarf Gliese 229B: Thermochemical Equilibrium Predictions , 1996 .

[80]  T. Guillot,et al.  Atmospheric, Evolutionary, and Spectral Models of the Brown Dwarf Gliese 229 B , 1996, Science.

[81]  T. Guillot,et al.  A Theory of Extrasolar Giant Planets , 1995, astro-ph/9510046.

[82]  Gilles Chabrier,et al.  An Equation of State for Low-Mass Stars and Giant Planets , 1995 .

[83]  J. Tennyson,et al.  Computed infrared absorption properties of hot water vapour , 1995 .

[84]  B. Fegley,et al.  Chemical Models of the Deep Atmospheres of Jupiter and Saturn , 1994 .

[85]  William B. Hubbard,et al.  Cool zero-metallicity stellar atmospheres , 1994 .

[86]  A. Burrows,et al.  The science of brown dwarfs , 1993 .

[87]  A. Burrows,et al.  An expanded set of brown dwarf and very low mass star models , 1993 .

[88]  Eduardo L. Martin,et al.  Spectroscopy of a Brown Dwarf Candidate in the alpha Persei Open Cluster , 1992 .

[89]  E. Friel,et al.  Chemical composition of open clusters. I. Fe/H from high-resolution spectroscopy. II. C/H and C/Fe in F dwarfs from high-resolution spectroscopy , 1990 .

[90]  C. McKay,et al.  Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres , 1989 .

[91]  A. Burrows,et al.  Theoretical models of very low mass stars and brown dwarfs , 1989 .

[92]  C. McKay,et al.  The thermal structure of Titan's atmosphere. , 1989, Icarus.

[93]  A. Burrows,et al.  The effect of gas and grain opacity on the cooling of brown dwarfs , 1989 .

[94]  L. Hartmann,et al.  The distribution of rotational velocities for low-mass stars in the Pleiades , 1987 .

[95]  S. Rappaport,et al.  The evolution of very low mass stars , 1986 .

[96]  F. D’Antona,et al.  Evolution of very low mass stars and brown dwarfs. I. The minimum main-sequence mass and luminosity. , 1985 .

[97]  Glenn E. Miller,et al.  The Initial mass function and stellar birthrate in the solar neighborhood , 1979 .

[98]  H. E. DeWitt,et al.  Screening Factors for Nuclear Reactions. 11. Intermediate Screen-Ing and Astrophysical Applications , 1973 .