A SQP-Semismooth Newton-type Algorithm applied to Control of the instationary Navier--Stokes System Subject to Control Constraints

SQP methods for the optimal control of the instationary Navier--Stokes equations with pointwise constraints on the control are considered. Due to the presence of the constraints, the quadratic subproblems (QPs) of SQP require a more sophisticated solver when compared to the unconstrained case. In this paper, a semismooth Newton method is proposed for efficiently solving the QPs. The convergence analysis, which is performed in an appropriate function space setting, relies on the concept of slant differentiability for proving locally superlinear convergence of the QP-solver. For the analysis of the outer SQP-iteration a generalized equations approach is utilized. Sufficient conditions for guaranteeing strong regularity of the generalized equation are established which, in turn, allows one to argue a quadratic rate of convergence of the SQP-method. The paper ends with a report on numerical results supporting the theoretical findings.

[1]  Michael Ulbrich,et al.  Constrained optimal control of Navier-Stokes flow by semismooth Newton methods , 2003, Syst. Control. Lett..

[2]  L. Hou,et al.  Boundary Value Problems and Optimal Boundary Control for the Navier--Stokes System: the Two-Dimensional Case , 1998 .

[3]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[4]  M. Hintermueller On a globalized augmented Lagrangian SQP-algorithm for nonlinear optimal control problems with box constraints , 2001 .

[5]  Xiaojun Chen,et al.  Smoothing Methods and Semismooth Methods for Nondifferentiable Operator Equations , 2000, SIAM J. Numer. Anal..

[6]  R. Glowinski Finite element methods for incompressible viscous flow , 2003 .

[7]  Kazufumi Ito,et al.  Optimal Controls of Navier--Stokes Equations , 1994 .

[8]  Max D. Gunzburger,et al.  Analysis and Approximation of the Velocity Tracking Problem for Navier-Stokes Flows with Distributed Control , 2000, SIAM J. Numer. Anal..

[9]  P. Hood,et al.  A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .

[10]  M. Hintermueller,et al.  A primal-dual active set algorithm for bilaterally control constrained optimal control problems , 2003 .

[11]  Jacques-Louis Lions,et al.  Control of distributed singular systems , 1985 .

[12]  W. Alt The lagrange-newton method for infinite-dimensional optimization problems , 1990 .

[13]  Karl Kunisch,et al.  Second Order Methods for Optimal Control of Time-Dependent Fluid Flow , 2001, SIAM J. Control. Optim..

[14]  T. Zolezzi,et al.  Well-Posed Optimization Problems , 1993 .

[15]  Herbert Amann,et al.  Compact embeddings of vector valued Sobolev and Besov spaces , 2000 .

[16]  Martin Berggren,et al.  Numerical Solution of a Flow-Control Problem: Vorticity Reduction by Dynamic Boundary Action , 1998, SIAM J. Sci. Comput..

[17]  Michael Hintermüller,et al.  Globalization of SQP-Methods in Control of the Instationary Navier-Stokes Equations , 2002 .

[18]  Michael Hinze,et al.  Error Estimates in Space and Time for Tracking-type Control of the Instationary Stokes System , 2003 .

[19]  M. Heinkenschloss Formulation and Analysis of a Sequential Quadratic Programming Method for the Optimal Dirichlet Boundary Control of Navier-Stokes Flow , 1998 .

[20]  K. Kunisch,et al.  Primal-Dual Strategy for Constrained Optimal Control Problems , 1999 .

[21]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[22]  F. Tröltzsch,et al.  The SQP method for control constrained optimal control of the Burgers equation , 2001 .

[23]  K. Kunisch,et al.  Second order methods for boundary control of the instationary Navier‐Stokes system , 2004 .

[24]  Stephen M. Robinson,et al.  Strongly Regular Generalized Equations , 1980, Math. Oper. Res..

[25]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[26]  Homer F. Walker,et al.  Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..

[27]  Fredi Tröltzsch,et al.  Second-order sufficient optimality conditions for the optimal control of navier-stokes equations , 2006 .

[28]  R. Temam Navier-Stokes Equations , 1977 .

[29]  Thomas Bewley,et al.  Flow control: new challenges for a new Renaissance , 2001 .

[30]  Karl Kunisch,et al.  A Comparison of a Moreau-Yosida-Based Active Set Strategy and Interior Point Methods for Constrained Optimal Control Problems , 2000, SIAM J. Optim..

[31]  Omar Ghattas,et al.  Optimal Control of Two- and Three-Dimensional Incompressible Navier-Stokes Flows , 1997 .