A SQP-Semismooth Newton-type Algorithm applied to Control of the instationary Navier--Stokes System Subject to Control Constraints
暂无分享,去创建一个
[1] Michael Ulbrich,et al. Constrained optimal control of Navier-Stokes flow by semismooth Newton methods , 2003, Syst. Control. Lett..
[2] L. Hou,et al. Boundary Value Problems and Optimal Boundary Control for the Navier--Stokes System: the Two-Dimensional Case , 1998 .
[3] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[4] M. Hintermueller. On a globalized augmented Lagrangian SQP-algorithm for nonlinear optimal control problems with box constraints , 2001 .
[5] Xiaojun Chen,et al. Smoothing Methods and Semismooth Methods for Nondifferentiable Operator Equations , 2000, SIAM J. Numer. Anal..
[6] R. Glowinski. Finite element methods for incompressible viscous flow , 2003 .
[7] Kazufumi Ito,et al. Optimal Controls of Navier--Stokes Equations , 1994 .
[8] Max D. Gunzburger,et al. Analysis and Approximation of the Velocity Tracking Problem for Navier-Stokes Flows with Distributed Control , 2000, SIAM J. Numer. Anal..
[9] P. Hood,et al. A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .
[10] M. Hintermueller,et al. A primal-dual active set algorithm for bilaterally control constrained optimal control problems , 2003 .
[11] Jacques-Louis Lions,et al. Control of distributed singular systems , 1985 .
[12] W. Alt. The lagrange-newton method for infinite-dimensional optimization problems , 1990 .
[13] Karl Kunisch,et al. Second Order Methods for Optimal Control of Time-Dependent Fluid Flow , 2001, SIAM J. Control. Optim..
[14] T. Zolezzi,et al. Well-Posed Optimization Problems , 1993 .
[15] Herbert Amann,et al. Compact embeddings of vector valued Sobolev and Besov spaces , 2000 .
[16] Martin Berggren,et al. Numerical Solution of a Flow-Control Problem: Vorticity Reduction by Dynamic Boundary Action , 1998, SIAM J. Sci. Comput..
[17] Michael Hintermüller,et al. Globalization of SQP-Methods in Control of the Instationary Navier-Stokes Equations , 2002 .
[18] Michael Hinze,et al. Error Estimates in Space and Time for Tracking-type Control of the Instationary Stokes System , 2003 .
[19] M. Heinkenschloss. Formulation and Analysis of a Sequential Quadratic Programming Method for the Optimal Dirichlet Boundary Control of Navier-Stokes Flow , 1998 .
[20] K. Kunisch,et al. Primal-Dual Strategy for Constrained Optimal Control Problems , 1999 .
[21] R. Dembo,et al. INEXACT NEWTON METHODS , 1982 .
[22] F. Tröltzsch,et al. The SQP method for control constrained optimal control of the Burgers equation , 2001 .
[23] K. Kunisch,et al. Second order methods for boundary control of the instationary Navier‐Stokes system , 2004 .
[24] Stephen M. Robinson,et al. Strongly Regular Generalized Equations , 1980, Math. Oper. Res..
[25] Kazufumi Ito,et al. The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..
[26] Homer F. Walker,et al. Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..
[27] Fredi Tröltzsch,et al. Second-order sufficient optimality conditions for the optimal control of navier-stokes equations , 2006 .
[28] R. Temam. Navier-Stokes Equations , 1977 .
[29] Thomas Bewley,et al. Flow control: new challenges for a new Renaissance , 2001 .
[30] Karl Kunisch,et al. A Comparison of a Moreau-Yosida-Based Active Set Strategy and Interior Point Methods for Constrained Optimal Control Problems , 2000, SIAM J. Optim..
[31] Omar Ghattas,et al. Optimal Control of Two- and Three-Dimensional Incompressible Navier-Stokes Flows , 1997 .