General design equations for the rotational stiffness, maximal angular deflection and rotational precision of various notch flexure hinges

Abstract. Notch flexure hinges are often used as revolute joints in high-precise compliant mechanisms, but their contour-dependent deformation and motion behaviour is currently difficult to predict. This paper presents general design equations for the calculation of the rotational stiffness, maximal angular elastic deflection and rotational precision of various notch flexure hinges in dependence of the geometric hinge parameters. The novel equations are obtained on the basis of a non-linear analytical model for a moment and a transverse force loaded beam with a variable contour height. Four flexure hinge contours are investigated, the semi-circular, the corner-filleted, the elliptical, and the recently introduced bi-quadratic polynomial contour. Depending on the contour, the error of the calculated results is in the range of less than 2 % to less than 16 % for the suggested parameter range compared with the analytical solution. Finite elements method (FEM) and experimental results correlate well with the predictions based on the comparatively simple and concise design equations.

[1]  Vincenzo Parenti-Castelli,et al.  A novel technique for position analysis of planar compliant mechanisms , 2005 .

[2]  Hong Hu,et al.  Accurate Equivalent Beam Model of a Planar Compliant Mechanism with Elliptical Flexure Hinges , 2009, 2009 International Conference on Measuring Technology and Mechatronics Automation.

[3]  F. Bona,et al.  Optimized Flexural Hinges for Compliant Micromechanisms , 2004 .

[4]  S. Fatikow,et al.  Hybrid flexure hinges. , 2013, The Review of scientific instruments.

[5]  Qiaoling Meng,et al.  New empirical stiffness equations for corner-filleted flexure hinges , 2013 .

[6]  Jianyuan Jia,et al.  A generalized model for conic flexure hinges. , 2009, The Review of scientific instruments.

[7]  Stuart T. Smith,et al.  ELLIPTICAL FLEXURE HINGES , 1997 .

[8]  Javier Martin,et al.  Novel Flexible Pivot with Large Angular Range and Small Center Shift to be Integrated into a Bio-Inspired Robotic Hand , 2011 .

[9]  J. Paros How to design flexure hinges , 1965 .

[10]  Simon Henein Flexures: simply subtle , 2010 .

[11]  ZhiWu Li,et al.  Right-circular corner-filleted flexure hinges , 2005, IEEE International Conference on Automation Science and Engineering, 2005..

[12]  S. Linß Ein Beitrag zur geometrischen Gestaltung und Optimierung prismatischer Festkörpergelenke in nachgiebigen Koppelmechanismen , 2015 .

[13]  Larry L. Howell,et al.  Mitigating the Effects of Local Flexibility at the Built-In Ends of Cantilever Beams , 2004 .

[14]  C. Pan,et al.  Closed-form compliance equations for power-function-shaped flexure hinge based on unit-load method , 2013 .

[15]  Eric R. Marsh,et al.  A unified geometric model for designing elastic pivots , 2008 .

[16]  Simon Henein,et al.  FLEXURE PIVOT FOR AEROSPACE MECHANISMS , 2007 .

[17]  Lena Zentner,et al.  The influence of asymmetric flexure hinges on the axis of rotation , 2011 .

[18]  Futoshi Kobayashi,et al.  Design System of Superelastic Hinges and Its Application to Micromanipulators , 1997 .

[19]  Xianmin Zhang,et al.  Design of single-axis flexure hinges using continuum topology optimization method , 2014 .

[20]  B. Zettl,et al.  On Systematic Errors of Two-Dimensional Finite Element Modeling of Right Circular Planar Flexure Hinges , 2005 .

[21]  Tien-Fu Lu,et al.  Review of circular flexure hinge design equations and derivation of empirical formulations , 2008 .

[22]  Jorge Angeles,et al.  Optimum Design of a Compliant Uniaxial Accelerometer , 2008 .

[23]  David Zhang,et al.  Three flexure hinges for compliant mechanism designs based on dimensionless graph analysis , 2010 .

[24]  N. Lobontiu,et al.  A generalized analytical compliance model for transversely symmetric three-segment flexure hinges. , 2011, The Review of scientific instruments.

[25]  Stuart T. Smith,et al.  Flexures: Elements of Elastic Mechanisms , 2000 .

[26]  Larry L. Howell,et al.  A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots , 1994 .

[27]  Xinbo Huang,et al.  A new generalized model for elliptical arc flexure hinges. , 2008, The Review of scientific instruments.

[28]  Nicolae Lobontiu,et al.  Compliant Mechanisms: Design of Flexure Hinges , 2002 .

[29]  Massimo Callegari,et al.  Study of a Fully Compliant U-Joint Designed for Minirobotics Applications , 2012 .

[30]  W. O. Schotborgh,et al.  Dimensionless design graphs for flexure elements and a comparison between three flexure elements , 2005 .

[31]  Lena Zentner,et al.  Considering the design of the flexure hinge contour for the synthesis of compliant linkage mechanisms , 2014 .

[32]  Zhiwei Zhu,et al.  Development of a novel sort of exponent-sine-shaped flexure hinges. , 2013, The Review of scientific instruments.

[33]  Frank Dirksen,et al.  Non-intuitive Design of Compliant Mechanisms Possessing Optimized Flexure Hinges , 2013 .

[34]  Saša Zelenika,et al.  Optimized flexural hinge shapes for microsystems and high-precision applications , 2009 .

[35]  Simon Desrochers,et al.  OPTIMUM DESIGN OF SIMPLICIAL UNIAXIAL ACCELEROMETERS , 2009 .

[36]  Pei Li,et al.  Optimum Design of a Parabolic Flexure Hinge Based on Compliance Closed-Form Equations , 2012 .

[37]  Guimin Chen,et al.  Generalized Equations for Estimating Stress Concentration Factors of Various Notch Flexure Hinges , 2014 .

[38]  Y. Tseytlin Notch flexure hinges: An effective theory , 2002 .

[39]  Xiaoyuan Liu,et al.  Elliptical-Arc-Fillet Flexure Hinges: Toward a Generalized Model for Commonly Used Flexure Hinges , 2011 .

[40]  Larry L. Howell,et al.  Handbook of compliant mechanisms , 2013 .

[41]  Rolf Lammering,et al.  On mechanical properties of planar flexure hinges of compliant mechanisms , 2011 .

[42]  Mario Studer,et al.  Filmgelenke dehnungsbezogen auslegen , 2007 .

[43]  Javier Martin,et al.  Novel Flexible Pivot With Large Angular Range and Small Center Shift to be Integrated Into a Bio-Inspired Robotic Hand , 2010 .

[44]  Nenad D. Pavlović,et al.  Synthesis of Compliant Mechanisms based on Goal-Oriented Design Guidelines for Prismatic Flexure Hinges with Polynomial Contours , 2015 .

[45]  Larry L. Howell,et al.  Handbook of Compliant Mechanisms: Howell/Handbook , 2013 .

[46]  Shusheng Bi,et al.  The Modeling of Leaf-Type Isosceles-Trapezoidal Flexural Pivots , 2007 .

[47]  Paul A. Tres,et al.  Designing Plastic Parts for Assembly , 1994, Designing Plastic Parts for Assembly.

[48]  Zhaoying Zhou,et al.  Design calculations for flexure hinges , 2002 .