Identification of compound channel flow parameters Optimization methods are used to estimate parameters required for routing floods through open compound channels. Besides initial and boundary flow conditions, data required especially include, cross-sectional area (A) of flow and conveyance (K) as functions of flow depth (y) for a representative cross-section of the study reach. Thus, instead of optimizing upon channel's geometric and hydraulic parameters, optimization is performed upon non-physical parameters in assumed A(y) and K(y) relationships. The optimization method selected for this application is the Nelder and Mead Simplex Algorithm. The objective function is expressed in terms of the relative differences between observed and simulated stages and discharges, which are evaluated based on the complete numerical solution of St Venant equations. This approach to formulating the optimization problem was applied to unsteady flow data sets for an experimental reach of the River Main in Northern Ireland. Based on statistical analysis, simulated and observed stages were found to be in good agreement. Identifikácia parametrov zložených kanálov Parametre potrebné pre kvantifikáciu transformácie povodňových vĺn v otvorených, zložených kanáloch, oli určené optimalizačnou metódou. Okrem počiatočných a okrajových podmienok sú potrebné ďalšie údaje, vrátane plochy priečneho rezu prúdom (A), ako aj vodivosť časti toku (K) ako funkcie hĺbky (y) pre reprezentatívny priečny rez. Namiesto optimalizácie geometrických a hydraulických parametrov kanála, optimalizácia sa vykonala pre nefyzické parametre, predpokladajúc závislosti A(y) a K(y). Vybranou metódou optimalizácie je Nelderov a Meadov Simplex Algoritmus. Funkcia je vyjadrená pomocou relatívnych rozdielov medzi pozorovanými a simulovanými vodnými stavmi a prietokmi, ktoré boli vyčíslené numerickým riešením rovníc St. Venanta. Tento spôsob formulácie optimalizačného problému bol aplikovaný na údaje pre neustálené prúdenie v experimentálnom priamom úseku rieky Main (River Main) v Severnom Írsku. Štatistickou analýzou bolo zistené, že simulované a merané vodné stavy boli veľmi blízke.
[1]
Douglass J. Wilde,et al.
Foundations of Optimization.
,
1967
.
[2]
R. D. Townsend,et al.
A model for routing unsteady flows in compound channels
,
1994
.
[3]
Peter R. Wormleaton,et al.
Parameter Optimization in Flood Routing
,
1984
.
[4]
Rahman Khatibi,et al.
Identification Problem of Open-Channel Friction Parameters
,
1997
.
[5]
Habib. Abida.
Mathematical modeling and parameter identification for unsteady flow in compound channels.
,
1992
.
[6]
B. Yen.
Hydraulics of Sewers
,
1986
.
[7]
V. T. Chow.
Open-channel hydraulics
,
1959
.
[8]
M. Demissie,et al.
Carrying Capacity of Flood Plains
,
1983
.
[9]
IDENTIFICATION OF ROUGHNESS IN OPEN CHANNELS
,
2004
.
[10]
H. T. Nguyen,et al.
IDENTIFICATION OF ROUGHNESS FOR FLOOD ROUTING IN COMPOUND CHANNELS
,
2005
.
[11]
Danny L. Fread,et al.
Calibration Technique for 1-D Unsteady Flow Models
,
1978
.
[12]
Yafei Jia,et al.
Identification of Manning's Roughness Coefficients in Shallow Water Flows
,
2004
.
[13]
F. Henderson.
Open channel flow
,
1966
.
[14]
Michael Amein,et al.
IMPLICIT FLOOD ROUTING IN NATURAL CHANNELS
,
1970
.
[15]
W. Yeh,et al.
Identification of parameters in unsteady open channel flows
,
1972
.
[16]
Ehab A. Meselhe,et al.
ESTIMATION OF ROUGHNESS PROFILE IN TRAPEZOIDAL OPEN CHANNELS. TECHNICAL NOTE
,
1999
.