Prospects of III-nitride optoelectronics grown on Si

The use of III-nitride-based light-emitting diodes (LEDs) is now widespread in applications such as indicator lamps, display panels, backlighting for liquid-crystal display TVs and computer screens, traffic lights, etc. To meet the huge market demand and lower the manufacturing cost, the LED industry is moving fast from 2 inch to 4 inch and recently to 6 inch wafer sizes. Although Al2O3 (sapphire) and SiC remain the dominant substrate materials for the epitaxy of nitride LEDs, the use of large Si substrates attracts great interest because Si wafers are readily available in large diameters at low cost. In addition, such wafers are compatible with existing processing lines for 6 inch and larger wafers commonly used in the electronics industry. During the last decade, much exciting progress has been achieved in improving the performance of GaN-on-Si devices. In this contribution, the status and prospects of III-nitride optoelectronics grown on Si substrates are reviewed. The issues involved in the growth of GaN-based LED structures on Si and possible solutions are outlined, together with a brief introduction to some novel in situ and ex situ monitoring/characterization tools, which are especially useful for the growth of GaN-on-Si structures.

[1]  A. Uedono,et al.  Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors , 2006, Nature materials.

[2]  C. Humphreys,et al.  Response to “Comment on ‘The effects of Si doping on dislocation movement and tensile stress in GaN films’” [J. Appl. Phys. 109, 073509 (2011)] , 2011 .

[3]  Y. Yang,et al.  Rapid efficiency roll-off in high-quality green light-emitting diodes on freestanding GaN substrates , 2009 .

[4]  Theodore D. Moustakas,et al.  Gallium nitride (GaN) , 1998 .

[5]  J. P. Liu,et al.  Influence of high-temperature AIN buffer thickness on the properties of GaN grown on Si(111) , 2003 .

[6]  Eric Frayssinet,et al.  Growth of thick GaN layers on 4-in. and 6-in. silicon (111) by metal-organic vapor phase epitaxy , 2011 .

[7]  Herbert A. Will,et al.  Production of large‐area single‐crystal wafers of cubic SiC for semiconductor devices , 1983 .

[8]  Michael N. Fairchild,et al.  Nanoheteroepitaxial growth of GaN on Si nanopillar arrays , 2005 .

[9]  S. Hersee,et al.  Nanoheteroepitaxy: The Application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials , 1999 .

[10]  Oliver Ambacher,et al.  Growth and applications of Group III-nitrides , 1998 .

[11]  J. A. Van Vechten,et al.  Quantum Dielectric Theory of Electronegativity in Covalent Systems. III. Pressure-Temperature Phase Diagrams, Heats of Mixing, and Distribution Coefficients , 1973 .

[12]  Michael Heuken,et al.  Metalorganic Chemical Vapor Phase Epitaxy of Crack-Free GaN on Si (111) Exceeding 1 µm in Thickness , 2000 .

[13]  C. Humphreys,et al.  The effects of Si doping on dislocation movement and tensile stress in GaN films , 2011 .

[14]  G. L. Christenson,et al.  Overcoming the pseudomorphic critical thickness limit using compliant substrates , 1994 .

[15]  A. Bourret,et al.  Compliant substrates: a review on the concept, techniques and mechanisms , 2000 .

[16]  A. Dadgar,et al.  Semipolar single component GaN on planar high index Si(11h) substrates , 2010 .

[17]  Fernando Ponce,et al.  Edge and screw dislocations as nonradiative centers in InGaN/GaN quantum well luminescence , 2001 .

[18]  John A Rogers,et al.  Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting , 2011, Proceedings of the National Academy of Sciences.

[19]  Michael R. Krames,et al.  Auger recombination in InGaN measured by photoluminescence , 2007 .

[20]  J. Bläsing,et al.  In situ monitoring of the stress evolution in growing group-III-nitride layers , 2005 .

[21]  A. Witek,et al.  Some aspects of thermal conductivity of isotopically pure diamond—a comparison with nitrides , 1998 .

[22]  J. Lindner Ion beam synthesis of buried SiC layers in silicon: Basic physical processes , 2001 .

[23]  H. Amano,et al.  Growth of single crystalline GaN film on Si substrate using 3C-SiC as an intermediate layer , 1991 .

[24]  A. Allerman,et al.  Understanding GaN nucleation layer evolution on sapphire. , 2004 .

[25]  A. Strittmatter,et al.  Maskless epitaxial lateral overgrowth of GaN layers on structured Si(111) substrates , 2001 .

[26]  C. Humphreys,et al.  Microstructural origins of localization in InGaN quantum wells , 2010 .

[27]  P. Hinze,et al.  Large internal quantum efficiency of In-free UV-emitting GaN∕AlGaN quantum-well structures , 2006 .

[28]  M. Weyers,et al.  Advances in group III-nitride-based deep UV light-emitting diode technology , 2010 .

[29]  D. Pavlidis,et al.  Improved quality GaN by growth on compliant silicon-on-insulator substrates using metalorganic chemical vapor deposition , 1998 .

[30]  D. Gulino,et al.  Epitaxial lateral overgrowth of gallium nitride on silicon substrate , 2004 .

[31]  Pierre Gibart,et al.  Epitaxial Lateral Overgrowth of GaN , 2001 .

[32]  Hongxing Jiang,et al.  Growth of III-nitride photonic structures on large area silicon substrates , 2006 .

[33]  S. Adachi,et al.  HF‐ and NH4OH‐treated (111)Si surfaces studied by spectroscopic ellipsometry , 1993 .

[34]  Marc Ilegems,et al.  Bending of dislocations in GaN during epitaxial lateral overgrowth , 2004 .

[35]  E. Feltin,et al.  Microstructure of GaN layers grown on Si(1 1 1) revealed by TEM , 2003 .

[36]  Shui-Tong Lee,et al.  ORIENTED DIAMOND GROWTH ON SILICON (111) USING A SOLID CARBON SOURCE , 1998 .

[37]  H. Riechert,et al.  Determination of the chemical composition of distorted InGaN/GaN heterostructures from x-ray diffraction data , 1999 .

[38]  D. Bimberg,et al.  Low‐temperature metalorganic chemical vapor deposition of InP on Si(001) , 1991 .

[39]  C. Humphreys,et al.  Structure and chemistry of the Si(111)/AlN interface , 2012 .

[40]  E. Schubert,et al.  Polarization-matched GaInN∕AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop , 2008 .

[41]  J. Baek,et al.  Epitaxial Lateral Overgrowth of GaN on Si (111) Substrates Using High‐Dose, N+ Ion Implantation , 2010 .

[42]  Subramanian S. Iyer,et al.  Approach to obtain high quality GaN on Si and SiC-on-silicon-on-insulator compliant substrate by molecular-beam epitaxy , 1995 .

[43]  Colin J. Humphreys,et al.  Highlighting threading dislocations in MOVPE-grown GaN using an in situ treatment with SiH4 and NH3 , 2006 .

[44]  Robert F. Karlicek,et al.  Growth of InGaN/GaN multiple-quantum-well blue light-emitting diodes on silicon by metalorganic vapor phase epitaxy , 1999 .

[45]  Yong-Hoon Cho,et al.  High efficiency and brightness of blue light emission from dislocation-free InGaN∕GaN quantum well nanorod arrays , 2005 .

[46]  Armin Dadgar,et al.  Crack-Free, Highly Conducting GaN Layers on Si Substrates by Ge Doping , 2011 .

[47]  P. Hinze,et al.  Optimizing the internal quantum efficiency of GaInN SQW structures for green light emitters , 2006 .

[48]  Colin J. Humphreys,et al.  Electron-beam-induced strain within InGaN quantum wells: False indium “cluster” detection in the transmission electron microscope , 2003 .

[49]  Jaime A. Freitas,et al.  Metalorganic chemical vapor deposition of GaN on Si(111): Stress control and application to field-effect transistors , 2001 .

[50]  A. Hangleiter,et al.  Towards understanding the emission efficiency of nitride quantum wells , 2004 .

[51]  J. Gracio,et al.  Residual stresses in chemical vapour deposited diamond films , 2000 .

[52]  S. Denbaars,et al.  High power and high efficiency blue light emitting diode on freestanding semipolar (101¯1¯) bulk GaN substrate , 2007 .

[53]  H. Okumura,et al.  GAN HETEROEPITAXIAL GROWTH ON SILICON NITRIDE BUFFER LAYERS FORMED ON SI (111) SURFACES BY PLASMA-ASSISTED MOLECULAR BEAM EPITAXY , 1998 .

[54]  J. Bläsing,et al.  Growth of blue GaN LED structures on 150-mm Si(1 1 1) , 2006 .

[55]  Pierre Gibart,et al.  Epitaxial lateral overgrowth of GaN on Si (111) , 2003 .

[56]  Colin J. Humphreys,et al.  Threading dislocation reduction in (0001) GaN thin films using SiNx interlayers , 2007 .

[57]  Armin Dadgar,et al.  GaN-Based Devices on Si , 2002 .

[58]  E. Ozbay,et al.  The influence of nitridation time on the structural properties of GaN grown on Si (111) substrate , 2009 .

[59]  Jerry R. Meyer,et al.  Band parameters for nitrogen-containing semiconductors , 2003 .

[60]  D. A. Zakheim,et al.  Analysis of the causes of the decrease in the electroluminescence efficiency of AlGaInN light-emitting-diode heterostructures at high pumping density , 2006 .

[61]  Hugo Bender,et al.  AlGaN/GaN/AlGaN Double Heterostructures Grown on 200 mm Silicon (111) Substrates with High Electron Mobility , 2011 .

[62]  S. L. Teo,et al.  InGaN∕GaN light emitting diodes on nanoscale silicon on insulator , 2007 .

[63]  Sven Einfeldt,et al.  In situ and ex situ evaluation of the film coalescence for GaN growth on GaN nucleation layers , 2000 .

[64]  C. Weisbuch,et al.  Direct measurement of internal quantum efficiency in light emitting diodes under electrical injection , 2011 .

[65]  Enhanced photoluminescence from GaN grown by lateral confined epitaxy , 2002 .

[66]  Joan M. Redwing,et al.  Growth stresses and cracking in GaN films on (111) Si grown by metalorganic chemical vapor deposition. II. Graded AlGaN buffer layers , 2005 .

[67]  Colin J. Humphreys,et al.  High photoluminescence quantum efficiency InGaN multiple quantum well structures emitting at 380 nm , 2007 .

[68]  Kevin J. Chen,et al.  Micro-Raman-scattering study of stress distribution in GaN films grown on patterned Si(111) by metal-organic chemical-vapor deposition , 2005 .

[69]  C. Humphreys,et al.  Optical and microstructural studies of InGaN∕GaN single-quantum-well structures , 2005 .

[70]  T. Egawa,et al.  Improved Characteristics of Blue and Green InGaN-Based Light-Emitting Diodes on Si Grown by Metalorganic Chemical Vapor Deposition , 2002 .

[71]  Cheul‐Ro Lee,et al.  Epitaxial Growth of Crack-Free GaN on Patterned Si(111) Substrate , 2008 .

[72]  K. Nishiyama,et al.  Recent Progress in Selective Area Growth and Epitaxial Lateral Overgrowth of III‐Nitrides: Effects of Reactor Pressure in MOVPE Growth , 1999 .

[73]  N. Bojarczuk,et al.  Multicolored light emitters on silicon substrates , 1998 .

[74]  Takashi Jimbo,et al.  GaN on Si Substrate with AlGaN/AlN Intermediate Layer , 1999 .

[75]  Su-hee Chae,et al.  Growth of high-quality InGaN/GaN LED structures on (1 1 1) Si substrates with internal quantum efficiency exceeding 50% , 2011 .

[76]  Daniel S. Green,et al.  Gallium nitride based transistors , 2001 .

[77]  M. Craford,et al.  Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting , 2007, Journal of Display Technology.

[78]  Fu-Rong Chen,et al.  HRTEM and energy filtering TEM study of interfacial reaction between diamond film and silicon , 1996 .

[79]  D. V. Dinh,et al.  Influence of AlN buffer layer thickness and deposition methods on GaN epitaxial growth , 2009 .

[80]  Takashi Mukai,et al.  High-Power and Long-Lifetime InGaN Multi-Quantum-Well Laser Diodes Grown on Low-Dislocation-Density GaN Substrates , 2000 .

[81]  Armin Dadgar,et al.  GaN-based optoelectronics on silicon substrates , 2002 .

[82]  A. Lunev,et al.  Selective Area Deposited Blue GaN-InGaN Multiple-Quantum Well Light Emitting Diodes over Silicon Substrates , 2000 .

[83]  K. Hiramatsu,et al.  Epitaxial lateral overgrowth of GaN on selected-area Si(1 1 1) substrate with nitrided Si mask , 2003 .

[84]  E. Kohn,et al.  MOVPE growth of GaN on Si(1 1 1) substrates , 2003 .

[85]  J. Bläsing,et al.  Crack‐Free InGaN/GaN Light Emitters on Si(111) , 2001 .

[86]  John E. Ayers,et al.  Compliant Substrates for Heteroepitaxial Semiconductor Devices: Theory, Experiment, and Current Directions , 2008 .

[87]  C. Humphreys,et al.  Interlayer methods for reducing the dislocation density in gallium nitride , 2007 .

[88]  M. Esashi,et al.  Silicon on insulator for symmetry-converted growth , 2007 .

[89]  T. Egawa,et al.  Breakdown Enhancement of AlGaN/GaN HEMTs on 4-in Silicon by Improving the GaN Quality on Thick Buffer Layers , 2009, IEEE Electron Device Letters.

[90]  Hadis Morkoç,et al.  On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers , 2008 .

[91]  Hadis Morko,et al.  Handbook of Nitride Semiconductors and Devices , 2008 .

[92]  T. Martin,et al.  InGaN/GaN LEDs grown on Si(111): dependence of device performance on threading dislocation density and emission wavelength , 2010 .

[93]  Qing Yang,et al.  Lattice-matched HfN buffer layers for epitaxy of GaN on Si , 2002 .

[94]  J. Bläsing,et al.  Growth of single-domain GaN layers on Si(0 0 1) by metalorganic vapor-phase epitaxy , 2006 .

[95]  Toshiki Makimoto,et al.  High luminescent efficiency of InGaN multiple quantum wells grown on InGaN underlying layers , 2004 .

[96]  Baoshun Zhang,et al.  Effect of the N/Al ratio of AlN buffer on the crystal properties and stress state of GaN film grown on Si(111) substrate , 2004 .

[97]  J. Speck,et al.  Stress relaxation in mismatched layers due to threading dislocation inclination , 2003 .

[98]  吉川 俊英,et al.  GaN device for highly efficient power amplifiers , 2011 .

[99]  C. Bowen,et al.  Modelling wafer bow in silicon–polycrystalline CVD diamond substrates for GaN-based devices , 2010 .

[100]  Bo E. Sernelius,et al.  Defect related issues in the current roll-off in InGaN based light emitting diodes , 2007 .

[101]  Colin J. Humphreys,et al.  Microstructural evolution of nonpolar (11-20) GaN grown on (1-102) sapphire using a 3D-2D method , 2009 .

[102]  W. Uen,et al.  Epitaxial growth of high-quality GaN on appropriately nitridated Si substrate by metal organic chemical vapor deposition , 2005 .

[103]  B. Hahn,et al.  High-Power and High-Efficiency InGaN-Based Light Emitters , 2010, IEEE Transactions on Electron Devices.

[104]  Sidewall epitaxial lateral overgrowth of nonpolar a‐plane GaN by metalorganic vapor phase epitaxy , 2008 .

[105]  M. Umeno,et al.  Thermal stability of GaN on (111)Si substrate , 1998 .

[106]  C. Humphreys,et al.  Scanning transmission electron microscopy investigation of the Si(111)/AlN interface grown by metalorganic vapor phase epitaxy , 2010 .

[107]  Atomic arrangement at the AlN/Si (111) interface , 2003 .

[108]  J. Hwang,et al.  Stress relaxation in the GaN∕AlN multilayers grown on a mesh-patterned Si(111) substrate , 2005 .

[109]  James H. Edgar,et al.  Substrates for gallium nitride epitaxy , 2002 .

[110]  Jürgen Christen,et al.  Light extraction from GaN‐based LED structures on silicon‐on‐insulator substrates , 2010 .

[111]  Yoshio Honda,et al.  Growth of ( 1 1 0 1 ) GaN on a 7-degree off-oriented (0 0 1)Si substrate by selective MOVPE , 2002 .

[112]  Jaewon Lee,et al.  Highly efficient InGaN/GaN blue LED on 8-inch Si (111) substrate , 2012, OPTO.

[113]  K. Hiramatsu,et al.  Selective growth of wurtzite GaN and AlxGa1-xN on GaN/sapphire substrates by metalorganic vapor phase epitaxy , 1994 .

[114]  Duncan Watson-Parris,et al.  The consequences of high injected carrier densities on carrier localization and efficiency droop in InGaN/GaN quantum well structures , 2012 .

[115]  Vibhu Jindal,et al.  Mechanism of large area dislocation defect reduction in GaN layers on AlN∕Si (111) by substrate engineering , 2007 .

[116]  Nobuo Kaneko,et al.  20 mΩ, 750 V High-Power AlGaN/GaN Heterostructure Field-Effect Transistors on Si Substrate , 2007 .

[117]  P. Vennégués,et al.  Growth of high-quality GaN by low-pressure metal-organic vapour phase epitaxy (LP-MOVPE from 3D islands and lateral overgrowth , 1999 .

[118]  Joseph Salzman,et al.  Thermal microcrack distribution control in GaN layers on Si substrates by lateral confined epitaxy , 2001 .

[119]  Yong Wang,et al.  High-performance III-nitride blue LEDs grown and fabricated on patterned Si substrates , 2007 .

[120]  E. Fred Schubert,et al.  Origin of efficiency droop in GaN-based light-emitting diodes , 2007 .

[121]  Joel W. Ager,et al.  Effect of Si doping on strain, cracking, and microstructure in GaN thin films grown by metalorganic chemical vapor deposition , 2000 .

[122]  M. Jublot,et al.  Dual-polarity GaN micropillars grown by metalorganic vapour phase epitaxy: Cross-correlation between structural and optical properties , 2014 .

[123]  Josef Zweck,et al.  Structural properties of AlGaN/GaN heterostructures on Si(111) substrates suitable for high-electron mobility transistors , 2000 .

[124]  Vibhu Jindal,et al.  Development of strain reduced GaN on Si "111… by substrate engineering , 2005 .

[125]  Takashi Miyoshi,et al.  Recent development of nitride LEDs and LDs , 2009, OPTO.

[126]  U-In Chung,et al.  Highly efficient InGaN/GaN blue LEDs on large diameter Si (111) substrates comparable to those on sapphire , 2011, Optical Engineering + Applications.

[127]  Yugang Zhou,et al.  Growth of high quality GaN layers with AlN buffer on Si(111) substrates , 2001 .

[128]  K. Terashima,et al.  Growth of GaN on Si substrates – roles of BP thin layer , 2002 .

[129]  Oliver G. Schmidt,et al.  Advanced quantum dot configurations , 2009 .

[130]  Michelle A. Moram,et al.  X-ray diffraction of III-nitrides , 2009 .

[131]  Y. Arakawa,et al.  Photoluminescence of GaN Quantum Wells with AlGaN Barriers of High Aluminium Content , 2000 .

[132]  David Zubia,et al.  Nanoheteroepitaxial growth of GaN on Si by organometallic vapor phase epitaxy , 2000 .

[133]  D. Allsopp,et al.  GaN nano‐pendeo‐epitaxy on Si(111) substrates , 2009 .

[134]  Z. Ye,et al.  Comparison of GaN epitaxial films on silicon nitride buffer and Si() , 2002 .

[135]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[136]  Gustaaf Borghs,et al.  High quality GaN grown on silicon(111) using a SixNy interlayer by metal-organic vapor phase epitaxy , 2008 .

[137]  C. Humphreys,et al.  Revealing all types of threading dislocations in GaN with improved contrast in a single plan view image , 2004 .

[138]  H. Matsunami,et al.  Epitaxial growth and electric characteristics of cubic SiC on silicon , 1987 .

[139]  Michael R. Melloch,et al.  GaN epilayers grown on 100 mm diameter Si(111) substrates , 2000 .

[140]  T. Martin,et al.  Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates , 2011 .

[141]  S. Kamiyama,et al.  Fracture of AlxGa1-xN/GaN Heterostructure –Compositional and Impurity Dependence– , 2001 .

[142]  T. Mukai,et al.  Blue, Green, and Amber InGaN/GaN Light-Emitting Diodes on Semipolar {11-22} GaN Bulk Substrates , 2006 .

[143]  James S. Speck,et al.  Si doping effect on strain reduction in compressively strained Al0.49Ga0.51N thin films , 2003 .

[144]  H. Amano,et al.  Stress and Defect Control in GaN Using Low Temperature Interlayers , 1998 .

[145]  E. Fred Schubert,et al.  Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes , 2009 .

[146]  G. Ghidini,et al.  Reaction of Oxygen with Si(111) and (100): Critical Conditions for the Growth of SiO2 , 1982 .

[147]  K. Delaney,et al.  Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes , 2011 .

[148]  Soo Jin Chua,et al.  Nanoscale lateral epitaxial overgrowth of GaN on Si (111) , 2005 .

[149]  Yoshio Honda,et al.  Growth of semi‐polar (11‐22)GaN on a (113)Si substrate by selective MOVPE , 2008 .

[150]  E. Feltin,et al.  Green InGaN Light-Emitting Diodes Grown on Silicon (111) by Metalorganic Vapor Phase Epitaxy , 2001 .

[151]  C. Humphreys,et al.  Growth of dislocation-free GaN islands on Si(1 1 1) using a scandium nitride buffer layer , 2007 .

[152]  B. J. Baliga,et al.  A novel method for etching trenches in silicon carbide , 1995 .

[153]  M. Heuken,et al.  GaN-based LEDs grown on 6-inch diameter Si (111) substrates by MOVPE , 2009, OPTO.

[154]  Colin J. Humphreys,et al.  Does In form In-rich clusters in InGaN quantum wells? , 2007 .

[155]  M. J. Soares,et al.  Simultaneous formation of silicon carbide and diamond on Si substrates by microwave plasma assisted chemical vapor deposition , 2008 .

[156]  S. Denbaars,et al.  Highly efficient broad‐area blue and white light‐emitting diodes on bulk GaN substrates , 2009 .

[157]  Yoshio Honda,et al.  Growth and properties of semi-polar GaN on a patterned silicon substrate , 2009 .

[158]  Dabing Li,et al.  Influence of the growth temperature of the high-temperature AlN buffer on the properties of GaN grown on Si(111) substrate , 2004 .

[159]  S. Denbaars,et al.  High Brightness Blue InGaN/GaN Light Emitting Diode on Nonpolar m-plane Bulk GaN Substrate , 2007 .

[160]  S. Kamiyama,et al.  One-sidewall-seeded epitaxial lateral overgrowth of a-plane GaN by metalorganic vapor-phase epitaxy , 2009 .

[161]  Shun-ichi Suzuki,et al.  Stress reduction in epitaxial GaN films on Si using cubic SiC as intermediate layers , 2006 .

[162]  Jürgen Christen,et al.  Improving GaN-on-silicon properties for GaN device epitaxy , 2011 .

[163]  Toby Xu,et al.  Development of new substrate technologies for GaN LEDs: atomic layer deposition transition layers on silicon and ZnO , 2009, OPTO.

[164]  A. Dadgar,et al.  GaN‐based epitaxy on silicon: stress measurements , 2003 .

[165]  T. Mukai,et al.  White light emitting diodes with super-high luminous efficacy , 2010 .

[166]  S. R. Lee,et al.  Relaxation of compressively-strained AlGaN by inclined threading dislocations , 2005 .

[167]  Armin Dadgar,et al.  Thick, crack-free blue light-emitting diodes on Si(111) using low-temperature AlN interlayers and in situ SixNy masking , 2002 .