Design and analysis of linear cascade DNA hybridization chain reactions using DNA hairpins

DNA self-assembly has been employed non-conventionally to construct nanoscale structures and dynamic nanoscale machines. The technique of hybridization chain reactions by triggered self-assembly has been shown to form various interesting nanoscale structures ranging from simple linear DNA oligomers to dendritic DNA structures. Inspired by earlier triggered self-assembly works, we present a system for controlled self-assembly of linear cascade DNA hybridization chain reactions using nine distinct DNA hairpins. NUPACK is employed to assist in designing DNA sequences and Matlab has been used to simulate DNA hairpin interactions. Gel electrophoresis and ensemble fluorescence reaction kinetics data indicate strong evidence of linear cascade DNA hybridization chain reactions. The half-time completion of the proposed linear cascade reactions indicates a linear dependency on the number of hairpins.

[1]  A. Turberfield,et al.  Mechanism for a directional, processive, and reversible DNA motor. , 2009, Small.

[2]  Miran Liber,et al.  A bipedal DNA motor that travels back and forth between two DNA origami tiles. , 2015, Small.

[3]  Xiaogang Qu,et al.  Speeding up a bidirectional DNA walking device. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[4]  David R. Liu,et al.  Autonomous Multistep Organic Synthesis in a Single Isothermal Solution Mediated by a DNA Walker , 2010, Nature nanotechnology.

[5]  Itamar Willner,et al.  All-DNA finite-state automata with finite memory , 2010, Proceedings of the National Academy of Sciences.

[6]  P. Yin,et al.  A DNAzyme that walks processively and autonomously along a one-dimensional track. , 2005, Angewandte Chemie.

[7]  Robert M. Dirks,et al.  Triggered amplification by hybridization chain reaction. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[8]  A. Ellington,et al.  A stochastic DNA walker that traverses a microparticle surface , 2015, Nature nanotechnology.

[9]  Chenxiang Lin,et al.  Knitting Complex Weaves with Dna Origami This Review Comes from a Themed Issue on Nucleic Acids Edited Dna and the Biosynthetic Advantage Single-layer Dna Origami Multi-layer Dna Origami Scaling to Greater Complexity Conclusions and Future Outlook , 2022 .

[10]  Thomas Tørring,et al.  DNA origami: a quantum leap for self-assembly of complex structures. , 2011, Chemical Society reviews.

[11]  F. Simmel,et al.  DNA-based nanodevices , 2007 .

[12]  G. Seelig,et al.  Enzyme-Free Nucleic Acid Logic Circuits , 2022 .

[13]  Luca Cardelli,et al.  Programmable chemical controllers made from DNA. , 2013, Nature nanotechnology.

[14]  Andrew Phillips,et al.  Probabilistic Analysis of Localized DNA Hybridization Circuits. , 2015, ACS synthetic biology.

[15]  Friedrich C Simmel,et al.  Robustness of localized DNA strand displacement cascades. , 2014, ACS nano.

[16]  Robert M. Dirks,et al.  An autonomous polymerization motor powered by DNA hybridization , 2007, Nature Nanotechnology.

[17]  Weihong Tan,et al.  An autonomous and controllable light-driven DNA walking device. , 2012, Angewandte Chemie.

[18]  Luis Ceze,et al.  DNA-based molecular architecture with spatially localized components , 2013, ISCA.

[19]  Kurt V. Gothelf LEGO-like DNA Structures , 2012, Science.

[20]  Andrew J. Turberfield,et al.  Kinetically controlled self-assembly of DNA oligomers. , 2009, Journal of the American Chemical Society.

[21]  A. Turberfield,et al.  DNA fuel for free-running nanomachines. , 2003, Physical review letters.

[22]  Jonathan Bath,et al.  Small molecule signals that direct the route of a molecular cargo. , 2012, Small.

[23]  Friedrich C. Simmel,et al.  Structural DNA Nanotechnology: From Bases to Bricks, From Structure to Function , 2010 .

[24]  Weihong Tan,et al.  Building a nanostructure with reversible motions using photonic energy. , 2012, ACS nano.

[25]  D. Y. Zhang,et al.  Control of DNA strand displacement kinetics using toehold exchange. , 2009, Journal of the American Chemical Society.

[26]  A. Turberfield,et al.  Coordinated chemomechanical cycles: a mechanism for autonomous molecular motion. , 2008, Physical review letters.

[27]  Ruchuan Liu,et al.  Bipedal nanowalker by pure physical mechanisms. , 2012, Physical review letters.

[28]  Stefan Howorka,et al.  DNA nanoarchitectonics: assembled DNA at interfaces. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[29]  Friedrich C Simmel,et al.  DNA-based assembly lines and nanofactories. , 2012, Current opinion in biotechnology.

[30]  Bernard Yurke,et al.  Meta-DNA: synthetic biology via DNA nanostructures and hybridization reactions , 2012, Journal of The Royal Society Interface.

[31]  Xi Chen,et al.  Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods , 2011, Nucleic acids research.

[32]  Juan Elezgaray,et al.  Connecting localized DNA strand displacement reactions. , 2015, Nanoscale.

[33]  A. Turberfield,et al.  Direct observation of stepwise movement of a synthetic molecular transporter. , 2011, Nature nanotechnology.

[34]  Jonathan Bath,et al.  A DNA-based molecular motor that can navigate a network of tracks. , 2012, Nature nanotechnology.

[35]  Erik Winfree,et al.  Molecular robots guided by prescriptive landscapes , 2010, Nature.

[36]  Xi Chen,et al.  Probing spatial organization of DNA strands using enzyme-free hairpin assembly circuits. , 2012, Journal of the American Chemical Society.

[37]  Richard A. Muscat,et al.  A programmable molecular robot. , 2011, Nano letters.

[38]  Hao Yan,et al.  Structural DNA Nanotechnology: State of the Art and Future Perspective , 2014, Journal of the American Chemical Society.

[39]  Hao Yan,et al.  DNA origami: a history and current perspective. , 2010, Current opinion in chemical biology.

[40]  Sung Ha Park,et al.  DNA nanotechnology: a future perspective , 2013, Nanoscale Research Letters.

[41]  Erik Winfree,et al.  Leakless DNA Strand Displacement Systems , 2015, DNA.

[42]  Jehoshua Bruck,et al.  Neural network computation with DNA strand displacement cascades , 2011, Nature.

[43]  Itamar Willner,et al.  DNA machines: bipedal walker and stepper. , 2011, Nano letters.

[44]  J. Reif,et al.  A unidirectional DNA walker that moves autonomously along a track. , 2004, Angewandte Chemie.

[45]  N. Pierce,et al.  A synthetic DNA walker for molecular transport. , 2004, Journal of the American Chemical Society.

[46]  Bernard Yurke,et al.  Using DNA to Power Nanostructures , 2003, Genetic Programming and Evolvable Machines.

[47]  D. Y. Zhang,et al.  Engineering Entropy-Driven Reactions and Networks Catalyzed by DNA , 2007, Science.

[48]  Miran Liber,et al.  Rational design of DNA motors: fuel optimization through single-molecule fluorescence. , 2013, Journal of the American Chemical Society.

[49]  Xi Chen,et al.  Stacking nonenzymatic circuits for high signal gain , 2013, Proceedings of the National Academy of Sciences.

[50]  Yamuna Krishnan,et al.  A DNA nanomachine that maps spatial and temporal pH changes inside living cells. , 2009, Nature nanotechnology.

[51]  A. Turberfield,et al.  A DNA-fuelled molecular machine made of DNA , 2022 .

[52]  Harry M. T. Choi,et al.  Programming biomolecular self-assembly pathways , 2008, Nature.

[53]  N. Seeman,et al.  A precisely controlled DNA biped walking device , 2004 .

[54]  Conrad Steenberg,et al.  NUPACK: Analysis and design of nucleic acid systems , 2011, J. Comput. Chem..

[55]  N. Seeman,et al.  A Proximity-Based Programmable DNA Nanoscale Assembly Line , 2010, Nature.

[56]  Nadrian C. Seeman,et al.  An Overview of Structural DNA Nanotechnology , 2007, Molecular biotechnology.

[57]  Friedrich C. Simmel,et al.  Diffusive transport of molecular cargo tethered to a DNA origami platform. , 2015, Nano letters.

[58]  Andrew Phillips,et al.  Localized Hybridization Circuits , 2011, DNA.

[59]  Jun Wei,et al.  Autonomous synergic control of nanomotors. , 2014, ACS nano.

[60]  Ramon Eritja,et al.  DNA Nanoarchitectures: Steps towards Biological Applications , 2014, Chembiochem : a European journal of chemical biology.

[61]  Jing Pan,et al.  A synthetic DNA motor that transports nanoparticles along carbon nanotubes. , 2014, Nature nanotechnology.

[62]  Andrew J Turberfield,et al.  DNA hairpins: fuel for autonomous DNA devices. , 2006, Biophysical journal.

[63]  G. Seelig,et al.  Dynamic DNA nanotechnology using strand-displacement reactions. , 2011, Nature chemistry.

[64]  Niles A. Pierce,et al.  A partition function algorithm for nucleic acid secondary structure including pseudoknots , 2003, J. Comput. Chem..

[65]  Darko Stefanovic,et al.  Behavior of polycatalytic assemblies in a substrate-displaying matrix. , 2006, Journal of the American Chemical Society.

[66]  Xiaogang Qu,et al.  A stimuli responsive DNA walking device. , 2011, Chemical communications.

[67]  Lulu Qian,et al.  Supporting Online Material Materials and Methods Figs. S1 to S6 Tables S1 to S4 References and Notes Scaling up Digital Circuit Computation with Dna Strand Displacement Cascades , 2022 .

[68]  A. Turberfield,et al.  A free-running DNA motor powered by a nicking enzyme. , 2005, Angewandte Chemie.

[69]  Ruojie Sha,et al.  A Bipedal DNA Brownian Motor with Coordinated Legs , 2009, Science.

[70]  Miran Liber,et al.  Studying the structural dynamics of bipedal DNA motors with single-molecule fluorescence spectroscopy. , 2012, ACS nano.

[71]  Hao Yan,et al.  A DNA tweezer-actuated enzyme nanoreactor , 2013, Nature Communications.

[72]  Juan Cheng,et al.  From bistate molecular switches to self-directed track-walking nanomotors. , 2014, ACS nano.