Cadmium and lead interaction with diatom surfaces: A combined thermodynamic and kinetic approach

[1]  P. Van Cappellen,et al.  Competitive binding of CU2+ and Zn2+ to live cells of shewanella putrefaciens. , 2007, Environmental science & technology.

[2]  J. Gaudet,et al.  Effect of cultivation and experimental conditions on the surface reactivity of the metal-resistant bacteria Cupriavidus metallidurans CH34 to protons, cadmium and zinc , 2007 .

[3]  K. Wilkinson,et al.  Characterization of H+ and Cd2+ binding properties of the bacterial exopolysaccharides. , 2006, Chemosphere.

[4]  R. Cygan,et al.  Molecular simulations of metal adsorption to bacterial surfaces , 2006 .

[5]  Alain Boudou,et al.  Interaction between zinc and freshwater and marine diatom species: Surface complexation and Zn isotope fractionation , 2006 .

[6]  J. Gaudet,et al.  Zinc sorption to three gram-negative bacteria: combined titration, modeling, and EXAFS study. , 2006, Environmental science & technology.

[7]  A. Boudou,et al.  A surface complexation model for cadmium and lead adsorption onto diatom surface , 2006 .

[8]  K. Wilkinson,et al.  Quantifying Pb and Cd complexation by alginates and the role of metal binding on macromolecular aggregation. , 2005, Biomacromolecules.

[9]  Benjamin F. Turner,et al.  A universal surface complexation framework for modeling proton binding onto bacterial surfaces in geologic settings , 2005 .

[10]  J. Szymanowski,et al.  Surface complexation modeling of proton and Cd adsorption onto an algal cell wall. , 2005, Environmental science & technology.

[11]  D. Borrok,et al.  The impact of ionic strength on the adsorption of protons, Pb, Cd, and Sr onto the surfaces of Gram negative bacteria: testing non-electrostatic, diffuse, and triple-layer models. , 2005, Journal of colloid and interface science.

[12]  A. Boudou,et al.  Speciation of Zn associated with diatoms using X-ray absorption spectroscopy. , 2005, Environmental science & technology.

[13]  K. Wilkinson,et al.  Cadmium uptake by a green alga can be predicted by equilibrium modelling. , 2005, Environmental science & technology.

[14]  Vera I. Slaveykova,et al.  Predicting the bioavailability of metals and metal complexes: Critical review of the biotic ligand model , 2005 .

[15]  A. Gélabert Caractérisation physico-chimique des interactions métaux-diatomées , 2005 .

[16]  A. Boudou,et al.  Study of diatoms/aqueous solution interface. I. Acid-base equilibria and spectroscopic observation of freshwater and marine species , 2004 .

[17]  D. Borrok,et al.  Proton and Cd adsorption onto natural bacterial consortia: Testing universal adsorption behavior , 2004 .

[18]  Robert M. Smith,et al.  NIST standard reference database 46 version 8.0: NIST critically selected stability constants of metal complexes , 2004 .

[19]  Robert M. Smith,et al.  NIST Critically Selected Stability Constants of Metal Complexes Database , 2004 .

[20]  D. Fowle,et al.  Adsorption of cadmium to Bacillus subtilis bacterial cell walls: a pH-dependent X-ray absorption fine structure spectroscopy study , 2003 .

[21]  I. Sutherland,et al.  Comparison of the acid-base behaviour and metal adsorption characteristics of a gram-negative bacterium with other strains , 2003 .

[22]  A. Boudou,et al.  Effects of cadmium stress on periphytic diatom communities in indoor artificial streams , 2003 .

[23]  Jeremy B. Fein,et al.  X-ray absorption fine structure determination of pH-dependent U-bacterial cell wall interactions , 2002 .

[24]  D. S. Smith,et al.  Determination of intrinsic bacterial surface acidity constants using a donnan shell model and a continuous pK(a) distribution method. , 2002, Journal of colloid and interface science.

[25]  K. Wilkinson,et al.  Physicochemical aspects of lead bioaccumulation by Chlorella vulgaris. , 2002, Environmental science & technology.

[26]  O. Pokrovsky,et al.  Surface chemistry and dissolution kinetics of divalent metal carbonates. , 2002, Environmental science & technology.

[27]  Jeremy B. Fein,et al.  Metal Adsorption onto Bacterial Surfaces: Development of a Predictive Approach , 2001 .

[28]  F. G. Ferris,et al.  Chemical Equilibrium Modeling Techniques for the Analysis of High-Resolution Bacterial Metal Sorption Data , 2001 .

[29]  R. Buchholz,et al.  Comparative analysis of the biosorption of cadmium, lead, nickel, and zinc by algae. , 2001, Environmental science & technology.

[30]  N. Yee,et al.  Cd adsorption onto bacterial surfaces: A universal adsorption edge? , 2001 .

[31]  D. Fowle,et al.  Experimental measurements of the reversibility of metal–bacteria adsorption reactions , 2000 .

[32]  M. Wong,et al.  Ionic strength effects in biosorption of metals by marine algae. , 2000, Chemosphere.

[33]  M. González‐Dávila,et al.  Copper adsorption in diatom cultures , 2000 .

[34]  F. Morel,et al.  A biological function for cadmium in marine diatoms. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[35]  K. Wilkinson,et al.  Regulation of Zn Accumulation by a Freshwater Gram-Positive Bacterium (Rhodococcus opacus) , 2000 .

[36]  Jeremy B. Fein,et al.  Competitive adsorption of metal cations onto two gram positive bacteria: testing the chemical equilibrium model , 1999 .

[37]  Lützenkirchen The Constant Capacitance Model and Variable Ionic Strength: An Evaluation of Possible Applications and Applicability. , 1999, Journal of colloid and interface science.

[38]  W. Sunda,et al.  Control of Cd concentrations in a coastal diatom by interactions among free ionic Cd, Zn, and Mn in seawater , 1998 .

[39]  N. Yee,et al.  A comparison of the thermodynamics of metal adsorption onto two common bacteria , 1998 .

[40]  Jeremy B. Fein,et al.  A chemical equilibrium model for metal adsorption onto bacterial surfaces , 1997 .

[41]  J. Moffett,et al.  Trace metal control of phytochelatin production in coastal waters , 1997 .

[42]  L. Sigg,et al.  Chemical and Spectroscopic Characterization of Algae Surfaces , 1997 .

[43]  Nita Sahai,et al.  Theoretical prediction of single-site surface-protonation equilibrium constants for oxides and silicates in water , 1996 .

[44]  S. Schiewer,et al.  Modeling of the proton-metal ion exchange in biosorption. , 1995, Environmental science & technology.

[45]  M. González‐Dávila,et al.  The role of phytoplankton cells on the control of heavy metal concentration in seawater , 1995 .

[46]  F. Millero,et al.  Binding of Cu(II) to the Surface and Exudates of the Alga Dunaliella tertiolecta in Seawater. , 1995, Environmental science & technology.

[47]  S. Lincoln,et al.  Substitution Reactions of Solvated Metal Ions , 1995 .

[48]  F. Millero,et al.  Pb2' interactions with the marine phytoplankton Dunaliella tertiolecta , 1995 .

[49]  W. Stumm Chemistry of the solid-water interface , 1992 .

[50]  J. Allison,et al.  MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems: Version 3. 0 user's manual , 1991 .

[51]  L. Sigg,et al.  Binding of Cu(II) to algae in a metal buffer , 1990 .

[52]  F. Morel,et al.  Kinetics of Trace Metal Complexation: Ligand-Exchange Reactions , 1990 .

[53]  B. Wehrli,et al.  Adsorption kinetics of vanadyl (IV) and chromium (III) to aluminum oxide: Evidence for a two-step mechanism , 1990 .

[54]  R. Hecky,et al.  The amino acid and sugar composition of diatom cell-walls , 1973 .