Generalized averaged Szegő quadrature rules

Szegź quadrature rules are commonly applied to integrate periodic functions on the unit circle in the complex plane. However, often it is difficult to determine the quadrature error. Recently, Spalevic introduced generalized averaged Gauss quadrature rules for estimating the quadrature error obtained when applying Gauss quadrature over an interval on the real axis. We describe analogous quadrature rules for the unit circle that often yield higher accuracy than Szegź rules using the same moment information and may be used to estimate the error in Szegź quadrature rules.

[1]  L. Reichel,et al.  A divide and conquer method for unitary and orthogonal eigenproblems , 1990 .

[2]  Dirk P. Laurie,et al.  Anti-Gaussian quadrature formulas , 1996, Math. Comput..

[3]  Ming Gu,et al.  A Stable Divide and Conquer Algorithm for the Unitary Eigenproblem , 2003, SIAM J. Matrix Anal. Appl..

[4]  Barry Simon,et al.  Orthogonal Polynomials on the Unit Circle , 2004, Encyclopedia of Special Functions: The Askey-Bateman Project.

[5]  Lothar Reichel,et al.  A CS decomposition for orthogonal matrices with application to eigenvalue computation , 2015 .

[6]  Lothar Reichel,et al.  On the construction of Szego polynomials , 1993 .

[7]  W. Gragg,et al.  The generalized Schur algorithm for the superfast solution of Toeplitz systems , 1987 .

[8]  G. Szegő Zeros of orthogonal polynomials , 1939 .

[9]  Bernardo de la Calle Ysern Optimal extension of the Szegő quadrature , 2015 .

[10]  Lothar Reichel,et al.  Stieltjes-type polynomials on the unit circle , 2008, Math. Comput..

[11]  L. Reichel,et al.  Generalized averaged Gauss quadrature rules for the approximation of matrix functionals , 2016 .

[12]  Miodrag M. Spalevic On generalized averaged Gaussian formulas , 2007, Math. Comput..

[13]  W. Gragg Positive definite Toeplitz matrices, the Arnoldi process for isometric operators, and Gaussian quadrature on the unit circle , 1993 .

[14]  Michael Stewart An Error Analysis of a Unitary Hessenberg QR Algorithm , 2006, SIAM J. Matrix Anal. Appl..

[15]  Lothar Reichel,et al.  Anti-Szego quadrature rules , 2007, Math. Comput..

[16]  Lloyd N. Trefethen,et al.  The Exponentially Convergent Trapezoidal Rule , 2014, SIAM Rev..

[17]  Miodrag M. Spalevic A note on generalized averaged Gaussian formulas , 2007, Numerical Algorithms.

[18]  P. Henrici Fast Fourier Methods in Computational Complex Analysis , 1979 .

[19]  Raf Vandebril,et al.  Fast and stable unitary QR algorithm , 2015 .

[20]  Lothar Reichel,et al.  Szegő-Lobatto quadrature rules , 2007 .

[21]  W. Gautschi Orthogonal Polynomials: Computation and Approximation , 2004 .

[22]  L. Reichel,et al.  On the eigenproblem for orthogonal matrices , 1986, 1986 25th IEEE Conference on Decision and Control.

[23]  William B. Gragg,et al.  The QR algorithm for unitary Hessenberg matrices , 1986 .

[24]  W. J. Thron,et al.  Moment Theory, Orthogonal Polynomials, Quadrature, and Continued Fractions Associated with the unit Circle , 1989 .

[25]  Adhemar Bultheel,et al.  A connection between quadrature formulas on the unit circle and the interval [ - 1,1] , 2001 .