Euclid: modelling massive neutrinos in cosmology — a code comparison
暂无分享,去创建一个
B. Garilli | T. Kitching | F. Pasian | W. Percival | J. Rhodes | L. Valenziano | F. Castander | A. Cimatti | H. Kurki-Suonio | P. Lilje | G. Meylan | K. Pedersen | R. Massey | M. Meneghetti | S. Paltani | T. Schrabback | G. Seidel | N. Aghanim | L. Amendola | P. Fosalba | M. Kunz | L. Moscardini | J. Weller | G. Zamorani | K. Jahnke | M. Douspis | M. Frailis | A. Grazian | O. Mansutti | M. Poncet | A. Taylor | A. Zacchei | E. Branchini | C. Carbone | V. Cardone | C. Giocoli | A. Kiessling | F. Marulli | V. Pettorino | B. Sartoris | J. Zoubian | M. Viel | J. Carretero | V. Springel | R. Saglia | M. Brescia | S. Cavuoti | B. Gillis | Y. Copin | G. Congedo | W. Elbers | M. Kilbinger | A. Secroun | X. Dupac | E. Franceschi | S. Galeotta | A. Hornstrup | G. Polenta | L. Popa | A. Renzi | J. Starck | Y. Wang | M. Baldi | S. Camera | D. Mota | D. Sapone | S. Niemi | W. Gillard | R. Toledo-Moreo | T. Vassallo | F. Villaescusa-Navarro | S. Dusini | L. Stanco | H. Degaudenzi | E. Medinaceli | C. Sirignano | G. Sirri | S. Hannestad | L. Conversi | I. Lloro | S. Haugan | N. Auricchio | R. Clédassou | G. Riccio | M. Castellano | R. Angulo | E. Munari | E. Romelli | O. Marggraf | D. Bonino | V. Capobianco | F. Dubath | F. Raison | M. Roncarelli | I. Tereno | S. Farrens | D. Potter | P. Monaco | C. Padilla | I. Tutusaus | C. Duncan | V. Scottez | P. Tallada-Cresp'i | F. Torradeflot | A. Schneider | T. Tram | H. Winther | T. Castro | R. E. Smith | F. Hassani | J. Adamek | S. Ferriol | W. Holmes | P. Schneider | G. Fabbian | C. Fidler | C. Arnold | R. Rebolo | K. Dolag | M. Zennaro | M. Biagetti | G. Parimbelli | B. Bose | A. D. Silva | S. Kermiche | J. Stadel | J. Dakin | K. Koyama | S. Schulz | C. Hern'andez-Aguayo | R. Mauland | C. Moretti | C. Partmann | B. S. Wright | Michele Moresco | B. Li | N. Auricchio
[1] D. Mota,et al. The void-galaxy cross-correlation function with massive neutrinos and modified gravity , 2023, Astronomy & Astrophysics.
[2] Ny,et al. Euclid preparation. XXVII. Covariance model validation for the 2-point correlation function of galaxy clusters , 2022, 2211.12965.
[3] B. Garilli,et al. Euclid preparation , 2022, Astronomy & Astrophysics.
[4] W. Elbers. Geodesic motion and phase-space evolution of massive neutrinos , 2022, Journal of Cosmology and Astroparticle Physics.
[5] C. Carbone,et al. DEMNUni: comparing nonlinear power spectra prescriptions in the presence of massive neutrinos and dynamical dark energy , 2022, Journal of Cosmology and Astroparticle Physics.
[6] Kelly R. Moran,et al. The Mira-Titan Universe – IV. High precision power spectrum emulation , 2022, Monthly Notices of the Royal Astronomical Society.
[7] M. Kunz,et al. Biased tracers as a probe of beyond-LCDM cosmologies , 2022, Astronomy & Astrophysics.
[8] Ulrich P. Steinwandel,et al. The role of physical and numerical viscosity in hydrodynamical instabilities , 2022, Monthly Notices of the Royal Astronomical Society.
[9] The Katrin Collaboration. Direct neutrino-mass measurement with sub-electronvolt sensitivity , 2022 .
[10] C. Fidler,et al. A minimal model for massive neutrinos in Newtonian N-body simulations , 2022, Journal of Cosmology and Astroparticle Physics.
[11] O. Hahn,et al. Large-scale dark matter simulations , 2021, Living Reviews in Computational Astrophysics.
[12] S. Hannestad,et al. The cosmological simulation code $\scriptstyle{\rm CO}N{\rm CEPT}\, 1.0$ , 2021, 2112.01508.
[13] S. Giri,et al. Emulation of baryonic effects on the matter power spectrum and constraints from galaxy cluster data , 2021, Journal of Cosmology and Astroparticle Physics.
[14] O. Mena,et al. Most constraining cosmological neutrino mass bounds , 2021, Physical Review D.
[15] C. Giocoli,et al. On the road to per cent accuracy – V. The non-linear power spectrum beyond ΛCDM with massive neutrinos and baryonic feedback , 2021, Monthly Notices of the Royal Astronomical Society.
[16] R. Laureijs,et al. Euclid: Effects of sample covariance on the number counts of galaxy clusters , 2021, Astronomy & Astrophysics.
[17] S. Contreras,et al. The BACCO simulation project: a baryonification emulator with neural networks , 2020, Monthly Notices of the Royal Astronomical Society.
[18] Y. Wong,et al. One line to run them all: SuperEasy massive neutrino linear response in 𝖭-body simulations , 2020, 2011.12504.
[19] J. Starck,et al. Euclid: Impact of non-linear and baryonic feedback prescriptions on cosmological parameter estimation from weak lensing cosmic shear , 2020, Astronomy & Astrophysics.
[20] B. Garilli,et al. Euclid preparation: IX. EuclidEmulator2 – power spectrum emulation with massive neutrinos and self-consistent dark energy perturbations , 2020, Monthly Notices of the Royal Astronomical Society.
[21] C. Frenk,et al. An optimal non-linear method for simulating relic neutrinos , 2020, Monthly Notices of the Royal Astronomical Society.
[22] Martin Reinecke,et al. Simulating cosmic structure formation with the GADGET-4 code , 2020, Monthly Notices of the Royal Astronomical Society.
[23] N. Yoshida,et al. Cosmological Vlasov–Poisson Simulations of Structure Formation with Relic Neutrinos: Nonlinear Clustering and the Neutrino Mass , 2020, The Astrophysical Journal.
[24] R. Nichol,et al. Euclid preparation , 2020, Astronomy & Astrophysics.
[25] C. Heymans,et al. hmcode-2020: improved modelling of non-linear cosmological power spectra with baryonic feedback , 2020, Monthly Notices of the Royal Astronomical Society.
[26] T. Schwetz,et al. The fate of hints: updated global analysis of three-flavor neutrino oscillations , 2020, Journal of High Energy Physics.
[27] A. Myers,et al. Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory , 2020, Physical Review D.
[28] S. Hannestad,et al. Spoon or slide? The non-linear matter power spectrum in the presence of massive neutrinos , 2020, Journal of Cosmology and Astroparticle Physics.
[29] C. Heymans,et al. On the road to per cent accuracy IV: ReACT – computing the non-linear power spectrum beyond ΛCDM , 2020, 2005.12184.
[30] J. Lesgourgues,et al. Hints, neutrino bounds, and WDM constraints from SDSS DR14 Lyman-α and Planck full-survey data , 2020, Journal of Cosmology and Astroparticle Physics.
[31] S. Contreras,et al. The BACCO simulation project: exploiting the full power of large-scale structure for cosmology , 2020, Monthly Notices of the Royal Astronomical Society.
[32] O. Hahn,et al. Fast simulations of cosmic large-scale structure with massive neutrinos , 2020, Journal of Cosmology and Astroparticle Physics.
[33] J. Lesgourgues,et al. What will it take to measure individual neutrino mass states using cosmology? , 2020, Journal of Cosmology and Astroparticle Physics.
[34] J. Lesgourgues,et al. Constraints on neutrinos and WDM Hints, neutrino bounds and WDM constraints from SDSS DR14 Lyman-$\alpha$ and Planck full-survey data , 2019, 1911.09073.
[35] R. Nichol,et al. Euclid preparation: VII. Forecast validation for Euclid cosmological probes , 2019, 1910.09273.
[36] A. Lokhov,et al. Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN. , 2019, Physical review letters.
[37] Rainer Weinberger,et al. The AREPO Public Code Release , 2019, The Astrophysical Journal Supplement Series.
[38] C. Heymans,et al. On the road to per cent accuracy – III. Non-linear reaction of the matter power spectrum to massive neutrinos , 2019, Monthly Notices of the Royal Astronomical Society.
[39] A. Melchiorri,et al. Cosmological constraints in extended parameter space from the Planck 2018 Legacy release , 2019, Journal of Cosmology and Astroparticle Physics.
[40] S. Contreras,et al. How to add massive neutrinos to your ΛCDM simulation – extending cosmology rescaling algorithms , 2019, Monthly Notices of the Royal Astronomical Society.
[41] C. Heymans,et al. On the road to percent accuracy: non-linear reaction of the matter power spectrum to dark energy and modified gravity , 2018, Monthly Notices of the Royal Astronomical Society.
[42] N. Yoshida,et al. Dark Quest. I. Fast and Accurate Emulation of Halo Clustering Statistics and Its Application to Galaxy Clustering , 2018, The Astrophysical Journal.
[43] Stefano Marelli,et al. Euclid preparation: II. The EuclidEmulator – a tool to compute the cosmology dependence of the nonlinear matter power spectrum , 2018, Monthly Notices of the Royal Astronomical Society.
[44] K. Koyama,et al. A new approach to cosmological structure formation with massive neutrinos , 2018, Journal of Cosmology and Astroparticle Physics.
[45] P. Fosalba,et al. Comparing approximate methods for mock catalogues and covariance matrices II: power spectrum multipoles , 2018, Monthly Notices of the Royal Astronomical Society.
[46] S. Hannestad,et al. Momentum space sampling of neutrinos in N-body simulations , 2018, Journal of Cosmology and Astroparticle Physics.
[47] P. Draper,et al. SWIFT: SPH With Inter-dependent Fine-grained Tasking , 2018 .
[48] L. Senatore,et al. Tree-level bispectrum in the effective field theory of large-scale structure extended to massive neutrinos , 2018, Journal of Cosmology and Astroparticle Physics.
[49] T. Kitching,et al. Preparing for the cosmic shear data flood: Optimal data extraction and simulation requirements for stage IV dark energy experiments , 2018, Physical Review D.
[50] Yu Feng,et al. An efficient and accurate hybrid method for simulating non-linear neutrino structure , 2018, Monthly Notices of the Royal Astronomical Society.
[51] T. Abel,et al. Reducing noise in cosmological N-body simulations with neutrinos , 2018, Journal of Cosmology and Astroparticle Physics.
[52] S. Hannestad,et al. νCONCEPT: cosmological neutrino simulations from the non-linear Boltzmann hierarchy , 2017, Journal of Cosmology and Astroparticle Physics.
[53] C. Carbone,et al. DEMNUni: massive neutrinos and the bispectrum of large scale structures , 2017, 1712.02334.
[54] Columbia,et al. MassiveNuS: cosmological massive neutrino simulations , 2017, 1711.10524.
[55] M. Kunz,et al. Relativistic N-body simulations with massive neutrinos , 2017, 1707.06938.
[56] K. Koyama,et al. COLA with massive neutrinos , 2017, 1705.08165.
[57] Hal Finkel,et al. The Mira-Titan Universe. II. Matter Power Spectrum Emulation , 2017, 1705.03388.
[58] S. Borgani,et al. Testing approximate predictions of displacements of cosmological dark matter halos , 2017, 1704.00920.
[59] M. Manera,et al. COLA with scale-dependent growth: applications to screened modified gravity models , 2017, 1703.00879.
[60] Z. Xing,et al. Cosmological neutrino simulations at extreme scale , 2016, 1611.01545.
[61] J. Lesgourgues,et al. Physical effects involved in the measurements of neutrino masses with future cosmological data , 2016, 1610.09852.
[62] S. Borgani,et al. Simulating cosmologies beyond ΛCDM with PINOCCHIO , 2016, 1610.07624.
[63] Joachim Stadel,et al. PKDGRAV3: beyond trillion particle cosmological simulations for the next era of galaxy surveys , 2016, 1609.08621.
[64] Arka Banerjee,et al. Simulating nonlinear cosmological structure formation with massive neutrinos , 2016, 1606.06167.
[65] L. Guzzo,et al. Initial Conditions for Accurate N-Body Simulations of Massive Neutrino Cosmologies , 2016, 1605.05283.
[66] S. Borgani,et al. Improving fast generation of halo catalogues with higher order Lagrangian perturbation theory , 2016, 1605.04788.
[67] M. Kunz,et al. gevolution: a cosmological N-body code based on General Relativity , 2016, 1604.06065.
[68] A. Pontzen,et al. Cosmological N-body simulations with suppressed variance , 2016, 1603.05253.
[69] M. Crocce,et al. Accurate estimators of correlation functions in Fourier space , 2015, 1512.07295.
[70] Pablo Fosalba,et al. ICE-COLA: towards fast and accurate synthetic galaxy catalogues optimizing a quasi-N-body method , 2015, 1509.04685.
[71] M. Kunz,et al. General relativity and cosmic structure formation , 2015, Nature Physics.
[72] Hal Finkel,et al. THE MIRA–TITAN UNIVERSE: PRECISION PREDICTIONS FOR DARK ENERGY SURVEYS , 2015, 1508.02654.
[73] L. Moscardini,et al. The universality of the virial halo mass function and models for non-universality of other halo definitions , 2015, 1507.05627.
[74] C. Carbone,et al. DEMNUni: the clustering of large-scale structures in the presence of massive neutrinos , 2015, 1505.07148.
[75] Joachim Stadel,et al. Matter power spectrum and the challenge of percent accuracy , 2015, 1503.05920.
[76] S. Borgani,et al. An improved SPH scheme for cosmological simulations , 2015, 1502.07358.
[77] M. Viel,et al. The halo model in a massive neutrino cosmology , 2014, 1410.6813.
[78] Hal Finkel,et al. HACC: Simulating Sky Surveys on State-of-the-Art Supercomputing Architectures , 2014, 1410.2805.
[79] S. Borgani,et al. Cosmology with massive neutrinos III: the halo mass function and an application to galaxy clusters , 2013, 1311.1514.
[80] M. Viel,et al. Cosmology with massive neutrinos II: on the universality of the halo mass function and bias , 2013, 1311.1212.
[81] Francisco Villaescusa-Navarro,et al. Cosmology with massive neutrinos I: towards a realistic modeling of the relation between matter, haloes and galaxies , 2013, 1311.0866.
[82] S. Borgani,et al. An accurate tool for the fast generation of dark matter halo catalogues. , 2013, 1305.1505.
[83] Matias Zaldarriaga,et al. Solving large scale structure in ten easy steps with COLA , 2013, 1301.0322.
[84] Ilian T. Iliev,et al. The halo mass function through the cosmic ages , 2012, 1212.0095.
[85] J. Lesgourgues,et al. Neutrino masses and cosmological parameters from a Euclid-like survey: Markov Chain Monte Carlo forecasts including theoretical errors , 2012, 1210.2194.
[86] S. Bird,et al. An efficient implementation of massive neutrinos in non-linear structure formation simulations , 2012, 1209.0461.
[87] Takahiro Nishimichi,et al. REVISING THE HALOFIT MODEL FOR THE NONLINEAR MATTER POWER SPECTRUM , 2012, 1208.2701.
[88] V. Springel,et al. Scaling relations for galaxy clusters in the Millennium-XXL simulation , 2012, 1203.3216.
[89] R. Nichol,et al. Euclid Definition Study Report , 2011, 1110.3193.
[90] M. Viel,et al. Massive neutrinos and the non‐linear matter power spectrum , 2011, 1109.4416.
[91] J. Lesgourgues,et al. The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes , 2011, 1104.2933.
[92] H. Feldman,et al. The effect of massive neutrinos on the matter power spectrum , 2010, 1006.0689.
[93] C. Giocoli,et al. Halo model description of the non-linear dark matter power spectrum at k≫ 1 Mpc−1 , 2010, 1003.4740.
[94] M. Viel,et al. The effect of neutrinos on the matter distribution as probed by the intergalactic medium , 2010, 1003.2422.
[95] Michael S. Warren,et al. THE LARGE-SCALE BIAS OF DARK MATTER HALOS: NUMERICAL CALIBRATION AND MODEL TESTS , 2010, 1001.3162.
[96] Simon D. M. White,et al. One simulation to fit them all - changing the background parameters of a cosmological N-body simulation , 2009, 0912.4277.
[97] S. Hannestad,et al. Resolving Cosmic Neutrino Structure: A Hybrid Neutrino N-body Scheme , 2009, 0908.1969.
[98] David Higdon,et al. THE COYOTE UNIVERSE. II. COSMOLOGICAL MODELS AND PRECISION EMULATION OF THE NONLINEAR MATTER POWER SPECTRUM , 2009, 0902.0429.
[99] V. Springel. E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh , 2009, 0901.4107.
[100] S. Hannestad,et al. Grid based linear neutrino perturbations in cosmological N-body simulations , 2008, 0812.3149.
[101] Durham,et al. The Aquarius Project: the subhaloes of galactic haloes , 2008, 0809.0898.
[102] Y. Wong,et al. Higher order corrections to the large scale matter power spectrum in the presence of massive neutrinos , 2008, 0809.0693.
[103] S. More,et al. Galaxy clustering and galaxy-galaxy lensing: a promising union to constrain cosmological parameters , 2008, 0807.4932.
[104] S. Hannestad,et al. The effect of thermal neutrino motion on the non-linear cosmological matter power spectrum , 2008, 0802.3700.
[105] M. Takada,et al. Impact of massive neutrinos on the nonlinear matter power spectrum. , 2008, Physical review letters.
[106] Heidelberg,et al. The population of dark matter subhaloes: mass functions and average mass-loss rates , 2007, 0712.1563.
[107] V. Springel. The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.
[108] L. Moscardini,et al. Properties of cluster satellites in hydrodynamical simulations , 2003, astro-ph/0304375.
[109] J. Peacock,et al. Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.
[110] R. Sheth,et al. Halo Models of Large Scale Structure , 2002, astro-ph/0206508.
[111] A. Lewis,et al. Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.
[112] R. Teyssier. Cosmological hydrodynamics with adaptive mesh refinement , 2001, Astronomy & Astrophysics.
[113] T. Theuns,et al. The pinocchio algorithm: pinpointing orbit-crossing collapsed hierarchical objects in a linear density field , 2001, astro-ph/0109323.
[114] R. Sheth,et al. An excursion set model of hierarchical clustering: ellipsoidal collapse and the moving barrier , 2001, astro-ph/0105113.
[115] A. Lewis,et al. Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.
[116] R. Somerville,et al. Profiles of dark haloes: evolution, scatter and environment , 1999, astro-ph/9908159.
[117] Ravi K. Sheth Giuseppe Tormen. Large scale bias and the peak background split , 1999, astro-ph/9901122.
[118] G. Tormen. THE ASSEMBLY OF MATTER IN GALAXY CLUSTERS , 1998 .
[119] Max Tegmark,et al. Weighing Neutrinos with Galaxy Surveys , 1997, astro-ph/9712057.
[120] S. White,et al. A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.
[121] E. Bertschinger,et al. A CALCULATION OF THE FULL NEUTRINO PHASE SPACE IN COLD + HOT DARK MATTER MODELS , 1993, astro-ph/9308006.
[122] J. Holtzman,et al. Structure formation with cold plus hot dark matter , 1993, astro-ph/9305011.
[123] D. Schlegel,et al. Large-scale structure in a universe with mixed hot and cold dark matter , 1992, Nature.
[124] J. L. Culhane,et al. Mullard Space Science Laboratory - University College - London , 1984 .
[125] J. R. Bond,et al. Massive neutrinos and the large-scale structure of the Universe , 1980 .
[126] Y. Zel’dovich. Gravitational instability: An Approximate theory for large density perturbations , 1969 .
[127] D. Hristopulos. Simulations , 2020, Advances in Geographic Information Science.
[128] R. Teyssier. A new high resolution code called RAMSES , 2008 .