Euclid: modelling massive neutrinos in cosmology — a code comparison

The measurement of the absolute neutrino mass scale from cosmological large-scale clustering data is one of the key science goals of the Euclid mission. Such a measurement relies on precise modelling of the impact of neutrinos on structure formation, which can be studied with N-body simulations. Here we present the results from a major code comparison effort to establish the maturity and reliability of numerical methods for treating massive neutrinos. The comparison includes eleven full N-body implementations (not all of them independent), two N-body schemes with approximate time integration, and four additional codes that directly predict or emulate the matter power spectrum. Using a common set of initial data we quantify the relative agreement on the nonlinear power spectrum of cold dark matter and baryons and, for the N-body codes, also the relative agreement on the bispectrum, halo mass function, and halo bias. We find that the different numerical implementations produce fully consistent results. We can therefore be confident that we can model the impact of massive neutrinos at the sub-percent level in the most common summary statistics. We also provide a code validation pipeline for future reference.

B. Garilli | T. Kitching | F. Pasian | W. Percival | J. Rhodes | L. Valenziano | F. Castander | A. Cimatti | H. Kurki-Suonio | P. Lilje | G. Meylan | K. Pedersen | R. Massey | M. Meneghetti | S. Paltani | T. Schrabback | G. Seidel | N. Aghanim | L. Amendola | P. Fosalba | M. Kunz | L. Moscardini | J. Weller | G. Zamorani | K. Jahnke | M. Douspis | M. Frailis | A. Grazian | O. Mansutti | M. Poncet | A. Taylor | A. Zacchei | E. Branchini | C. Carbone | V. Cardone | C. Giocoli | A. Kiessling | F. Marulli | V. Pettorino | B. Sartoris | J. Zoubian | M. Viel | J. Carretero | V. Springel | R. Saglia | M. Brescia | S. Cavuoti | B. Gillis | Y. Copin | G. Congedo | W. Elbers | M. Kilbinger | A. Secroun | X. Dupac | E. Franceschi | S. Galeotta | A. Hornstrup | G. Polenta | L. Popa | A. Renzi | J. Starck | Y. Wang | M. Baldi | S. Camera | D. Mota | D. Sapone | S. Niemi | W. Gillard | R. Toledo-Moreo | T. Vassallo | F. Villaescusa-Navarro | S. Dusini | L. Stanco | H. Degaudenzi | E. Medinaceli | C. Sirignano | G. Sirri | S. Hannestad | L. Conversi | I. Lloro | S. Haugan | N. Auricchio | R. Clédassou | G. Riccio | M. Castellano | R. Angulo | E. Munari | E. Romelli | O. Marggraf | D. Bonino | V. Capobianco | F. Dubath | F. Raison | M. Roncarelli | I. Tereno | S. Farrens | D. Potter | P. Monaco | C. Padilla | I. Tutusaus | C. Duncan | V. Scottez | P. Tallada-Cresp'i | F. Torradeflot | A. Schneider | T. Tram | H. Winther | T. Castro | R. E. Smith | F. Hassani | J. Adamek | S. Ferriol | W. Holmes | P. Schneider | G. Fabbian | C. Fidler | C. Arnold | R. Rebolo | K. Dolag | M. Zennaro | M. Biagetti | G. Parimbelli | B. Bose | A. D. Silva | S. Kermiche | J. Stadel | J. Dakin | K. Koyama | S. Schulz | C. Hern'andez-Aguayo | R. Mauland | C. Moretti | C. Partmann | B. S. Wright | Michele Moresco | B. Li | N. Auricchio

[1]  D. Mota,et al.  The void-galaxy cross-correlation function with massive neutrinos and modified gravity , 2023, Astronomy & Astrophysics.

[2]  Ny,et al.  Euclid preparation. XXVII. Covariance model validation for the 2-point correlation function of galaxy clusters , 2022, 2211.12965.

[3]  B. Garilli,et al.  Euclid preparation , 2022, Astronomy & Astrophysics.

[4]  W. Elbers Geodesic motion and phase-space evolution of massive neutrinos , 2022, Journal of Cosmology and Astroparticle Physics.

[5]  C. Carbone,et al.  DEMNUni: comparing nonlinear power spectra prescriptions in the presence of massive neutrinos and dynamical dark energy , 2022, Journal of Cosmology and Astroparticle Physics.

[6]  Kelly R. Moran,et al.  The Mira-Titan Universe – IV. High precision power spectrum emulation , 2022, Monthly Notices of the Royal Astronomical Society.

[7]  M. Kunz,et al.  Biased tracers as a probe of beyond-LCDM cosmologies , 2022, Astronomy & Astrophysics.

[8]  Ulrich P. Steinwandel,et al.  The role of physical and numerical viscosity in hydrodynamical instabilities , 2022, Monthly Notices of the Royal Astronomical Society.

[9]  The Katrin Collaboration Direct neutrino-mass measurement with sub-electronvolt sensitivity , 2022 .

[10]  C. Fidler,et al.  A minimal model for massive neutrinos in Newtonian N-body simulations , 2022, Journal of Cosmology and Astroparticle Physics.

[11]  O. Hahn,et al.  Large-scale dark matter simulations , 2021, Living Reviews in Computational Astrophysics.

[12]  S. Hannestad,et al.  The cosmological simulation code $\scriptstyle{\rm CO}N{\rm CEPT}\, 1.0$ , 2021, 2112.01508.

[13]  S. Giri,et al.  Emulation of baryonic effects on the matter power spectrum and constraints from galaxy cluster data , 2021, Journal of Cosmology and Astroparticle Physics.

[14]  O. Mena,et al.  Most constraining cosmological neutrino mass bounds , 2021, Physical Review D.

[15]  C. Giocoli,et al.  On the road to per cent accuracy – V. The non-linear power spectrum beyond ΛCDM with massive neutrinos and baryonic feedback , 2021, Monthly Notices of the Royal Astronomical Society.

[16]  R. Laureijs,et al.  Euclid: Effects of sample covariance on the number counts of galaxy clusters , 2021, Astronomy & Astrophysics.

[17]  S. Contreras,et al.  The BACCO simulation project: a baryonification emulator with neural networks , 2020, Monthly Notices of the Royal Astronomical Society.

[18]  Y. Wong,et al.  One line to run them all: SuperEasy massive neutrino linear response in 𝖭-body simulations , 2020, 2011.12504.

[19]  J. Starck,et al.  Euclid: Impact of non-linear and baryonic feedback prescriptions on cosmological parameter estimation from weak lensing cosmic shear , 2020, Astronomy & Astrophysics.

[20]  B. Garilli,et al.  Euclid preparation: IX. EuclidEmulator2 – power spectrum emulation with massive neutrinos and self-consistent dark energy perturbations , 2020, Monthly Notices of the Royal Astronomical Society.

[21]  C. Frenk,et al.  An optimal non-linear method for simulating relic neutrinos , 2020, Monthly Notices of the Royal Astronomical Society.

[22]  Martin Reinecke,et al.  Simulating cosmic structure formation with the GADGET-4 code , 2020, Monthly Notices of the Royal Astronomical Society.

[23]  N. Yoshida,et al.  Cosmological Vlasov–Poisson Simulations of Structure Formation with Relic Neutrinos: Nonlinear Clustering and the Neutrino Mass , 2020, The Astrophysical Journal.

[24]  R. Nichol,et al.  Euclid preparation , 2020, Astronomy & Astrophysics.

[25]  C. Heymans,et al.  hmcode-2020: improved modelling of non-linear cosmological power spectra with baryonic feedback , 2020, Monthly Notices of the Royal Astronomical Society.

[26]  T. Schwetz,et al.  The fate of hints: updated global analysis of three-flavor neutrino oscillations , 2020, Journal of High Energy Physics.

[27]  A. Myers,et al.  Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory , 2020, Physical Review D.

[28]  S. Hannestad,et al.  Spoon or slide? The non-linear matter power spectrum in the presence of massive neutrinos , 2020, Journal of Cosmology and Astroparticle Physics.

[29]  C. Heymans,et al.  On the road to per cent accuracy IV: ReACT – computing the non-linear power spectrum beyond ΛCDM , 2020, 2005.12184.

[30]  J. Lesgourgues,et al.  Hints, neutrino bounds, and WDM constraints from SDSS DR14 Lyman-α and Planck full-survey data , 2020, Journal of Cosmology and Astroparticle Physics.

[31]  S. Contreras,et al.  The BACCO simulation project: exploiting the full power of large-scale structure for cosmology , 2020, Monthly Notices of the Royal Astronomical Society.

[32]  O. Hahn,et al.  Fast simulations of cosmic large-scale structure with massive neutrinos , 2020, Journal of Cosmology and Astroparticle Physics.

[33]  J. Lesgourgues,et al.  What will it take to measure individual neutrino mass states using cosmology? , 2020, Journal of Cosmology and Astroparticle Physics.

[34]  J. Lesgourgues,et al.  Constraints on neutrinos and WDM Hints, neutrino bounds and WDM constraints from SDSS DR14 Lyman-$\alpha$ and Planck full-survey data , 2019, 1911.09073.

[35]  R. Nichol,et al.  Euclid preparation: VII. Forecast validation for Euclid cosmological probes , 2019, 1910.09273.

[36]  A. Lokhov,et al.  Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN. , 2019, Physical review letters.

[37]  Rainer Weinberger,et al.  The AREPO Public Code Release , 2019, The Astrophysical Journal Supplement Series.

[38]  C. Heymans,et al.  On the road to per cent accuracy – III. Non-linear reaction of the matter power spectrum to massive neutrinos , 2019, Monthly Notices of the Royal Astronomical Society.

[39]  A. Melchiorri,et al.  Cosmological constraints in extended parameter space from the Planck 2018 Legacy release , 2019, Journal of Cosmology and Astroparticle Physics.

[40]  S. Contreras,et al.  How to add massive neutrinos to your ΛCDM simulation – extending cosmology rescaling algorithms , 2019, Monthly Notices of the Royal Astronomical Society.

[41]  C. Heymans,et al.  On the road to percent accuracy: non-linear reaction of the matter power spectrum to dark energy and modified gravity , 2018, Monthly Notices of the Royal Astronomical Society.

[42]  N. Yoshida,et al.  Dark Quest. I. Fast and Accurate Emulation of Halo Clustering Statistics and Its Application to Galaxy Clustering , 2018, The Astrophysical Journal.

[43]  Stefano Marelli,et al.  Euclid preparation: II. The EuclidEmulator – a tool to compute the cosmology dependence of the nonlinear matter power spectrum , 2018, Monthly Notices of the Royal Astronomical Society.

[44]  K. Koyama,et al.  A new approach to cosmological structure formation with massive neutrinos , 2018, Journal of Cosmology and Astroparticle Physics.

[45]  P. Fosalba,et al.  Comparing approximate methods for mock catalogues and covariance matrices II: power spectrum multipoles , 2018, Monthly Notices of the Royal Astronomical Society.

[46]  S. Hannestad,et al.  Momentum space sampling of neutrinos in N-body simulations , 2018, Journal of Cosmology and Astroparticle Physics.

[47]  P. Draper,et al.  SWIFT: SPH With Inter-dependent Fine-grained Tasking , 2018 .

[48]  L. Senatore,et al.  Tree-level bispectrum in the effective field theory of large-scale structure extended to massive neutrinos , 2018, Journal of Cosmology and Astroparticle Physics.

[49]  T. Kitching,et al.  Preparing for the cosmic shear data flood: Optimal data extraction and simulation requirements for stage IV dark energy experiments , 2018, Physical Review D.

[50]  Yu Feng,et al.  An efficient and accurate hybrid method for simulating non-linear neutrino structure , 2018, Monthly Notices of the Royal Astronomical Society.

[51]  T. Abel,et al.  Reducing noise in cosmological N-body simulations with neutrinos , 2018, Journal of Cosmology and Astroparticle Physics.

[52]  S. Hannestad,et al.  νCONCEPT: cosmological neutrino simulations from the non-linear Boltzmann hierarchy , 2017, Journal of Cosmology and Astroparticle Physics.

[53]  C. Carbone,et al.  DEMNUni: massive neutrinos and the bispectrum of large scale structures , 2017, 1712.02334.

[54]  Columbia,et al.  MassiveNuS: cosmological massive neutrino simulations , 2017, 1711.10524.

[55]  M. Kunz,et al.  Relativistic N-body simulations with massive neutrinos , 2017, 1707.06938.

[56]  K. Koyama,et al.  COLA with massive neutrinos , 2017, 1705.08165.

[57]  Hal Finkel,et al.  The Mira-Titan Universe. II. Matter Power Spectrum Emulation , 2017, 1705.03388.

[58]  S. Borgani,et al.  Testing approximate predictions of displacements of cosmological dark matter halos , 2017, 1704.00920.

[59]  M. Manera,et al.  COLA with scale-dependent growth: applications to screened modified gravity models , 2017, 1703.00879.

[60]  Z. Xing,et al.  Cosmological neutrino simulations at extreme scale , 2016, 1611.01545.

[61]  J. Lesgourgues,et al.  Physical effects involved in the measurements of neutrino masses with future cosmological data , 2016, 1610.09852.

[62]  S. Borgani,et al.  Simulating cosmologies beyond ΛCDM with PINOCCHIO , 2016, 1610.07624.

[63]  Joachim Stadel,et al.  PKDGRAV3: beyond trillion particle cosmological simulations for the next era of galaxy surveys , 2016, 1609.08621.

[64]  Arka Banerjee,et al.  Simulating nonlinear cosmological structure formation with massive neutrinos , 2016, 1606.06167.

[65]  L. Guzzo,et al.  Initial Conditions for Accurate N-Body Simulations of Massive Neutrino Cosmologies , 2016, 1605.05283.

[66]  S. Borgani,et al.  Improving fast generation of halo catalogues with higher order Lagrangian perturbation theory , 2016, 1605.04788.

[67]  M. Kunz,et al.  gevolution: a cosmological N-body code based on General Relativity , 2016, 1604.06065.

[68]  A. Pontzen,et al.  Cosmological N-body simulations with suppressed variance , 2016, 1603.05253.

[69]  M. Crocce,et al.  Accurate estimators of correlation functions in Fourier space , 2015, 1512.07295.

[70]  Pablo Fosalba,et al.  ICE-COLA: towards fast and accurate synthetic galaxy catalogues optimizing a quasi-N-body method , 2015, 1509.04685.

[71]  M. Kunz,et al.  General relativity and cosmic structure formation , 2015, Nature Physics.

[72]  Hal Finkel,et al.  THE MIRA–TITAN UNIVERSE: PRECISION PREDICTIONS FOR DARK ENERGY SURVEYS , 2015, 1508.02654.

[73]  L. Moscardini,et al.  The universality of the virial halo mass function and models for non-universality of other halo definitions , 2015, 1507.05627.

[74]  C. Carbone,et al.  DEMNUni: the clustering of large-scale structures in the presence of massive neutrinos , 2015, 1505.07148.

[75]  Joachim Stadel,et al.  Matter power spectrum and the challenge of percent accuracy , 2015, 1503.05920.

[76]  S. Borgani,et al.  An improved SPH scheme for cosmological simulations , 2015, 1502.07358.

[77]  M. Viel,et al.  The halo model in a massive neutrino cosmology , 2014, 1410.6813.

[78]  Hal Finkel,et al.  HACC: Simulating Sky Surveys on State-of-the-Art Supercomputing Architectures , 2014, 1410.2805.

[79]  S. Borgani,et al.  Cosmology with massive neutrinos III: the halo mass function and an application to galaxy clusters , 2013, 1311.1514.

[80]  M. Viel,et al.  Cosmology with massive neutrinos II: on the universality of the halo mass function and bias , 2013, 1311.1212.

[81]  Francisco Villaescusa-Navarro,et al.  Cosmology with massive neutrinos I: towards a realistic modeling of the relation between matter, haloes and galaxies , 2013, 1311.0866.

[82]  S. Borgani,et al.  An accurate tool for the fast generation of dark matter halo catalogues. , 2013, 1305.1505.

[83]  Matias Zaldarriaga,et al.  Solving large scale structure in ten easy steps with COLA , 2013, 1301.0322.

[84]  Ilian T. Iliev,et al.  The halo mass function through the cosmic ages , 2012, 1212.0095.

[85]  J. Lesgourgues,et al.  Neutrino masses and cosmological parameters from a Euclid-like survey: Markov Chain Monte Carlo forecasts including theoretical errors , 2012, 1210.2194.

[86]  S. Bird,et al.  An efficient implementation of massive neutrinos in non-linear structure formation simulations , 2012, 1209.0461.

[87]  Takahiro Nishimichi,et al.  REVISING THE HALOFIT MODEL FOR THE NONLINEAR MATTER POWER SPECTRUM , 2012, 1208.2701.

[88]  V. Springel,et al.  Scaling relations for galaxy clusters in the Millennium-XXL simulation , 2012, 1203.3216.

[89]  R. Nichol,et al.  Euclid Definition Study Report , 2011, 1110.3193.

[90]  M. Viel,et al.  Massive neutrinos and the non‐linear matter power spectrum , 2011, 1109.4416.

[91]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes , 2011, 1104.2933.

[92]  H. Feldman,et al.  The effect of massive neutrinos on the matter power spectrum , 2010, 1006.0689.

[93]  C. Giocoli,et al.  Halo model description of the non-linear dark matter power spectrum at k≫ 1 Mpc−1 , 2010, 1003.4740.

[94]  M. Viel,et al.  The effect of neutrinos on the matter distribution as probed by the intergalactic medium , 2010, 1003.2422.

[95]  Michael S. Warren,et al.  THE LARGE-SCALE BIAS OF DARK MATTER HALOS: NUMERICAL CALIBRATION AND MODEL TESTS , 2010, 1001.3162.

[96]  Simon D. M. White,et al.  One simulation to fit them all - changing the background parameters of a cosmological N-body simulation , 2009, 0912.4277.

[97]  S. Hannestad,et al.  Resolving Cosmic Neutrino Structure: A Hybrid Neutrino N-body Scheme , 2009, 0908.1969.

[98]  David Higdon,et al.  THE COYOTE UNIVERSE. II. COSMOLOGICAL MODELS AND PRECISION EMULATION OF THE NONLINEAR MATTER POWER SPECTRUM , 2009, 0902.0429.

[99]  V. Springel E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh , 2009, 0901.4107.

[100]  S. Hannestad,et al.  Grid based linear neutrino perturbations in cosmological N-body simulations , 2008, 0812.3149.

[101]  Durham,et al.  The Aquarius Project: the subhaloes of galactic haloes , 2008, 0809.0898.

[102]  Y. Wong,et al.  Higher order corrections to the large scale matter power spectrum in the presence of massive neutrinos , 2008, 0809.0693.

[103]  S. More,et al.  Galaxy clustering and galaxy-galaxy lensing: a promising union to constrain cosmological parameters , 2008, 0807.4932.

[104]  S. Hannestad,et al.  The effect of thermal neutrino motion on the non-linear cosmological matter power spectrum , 2008, 0802.3700.

[105]  M. Takada,et al.  Impact of massive neutrinos on the nonlinear matter power spectrum. , 2008, Physical review letters.

[106]  Heidelberg,et al.  The population of dark matter subhaloes: mass functions and average mass-loss rates , 2007, 0712.1563.

[107]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[108]  L. Moscardini,et al.  Properties of cluster satellites in hydrodynamical simulations , 2003, astro-ph/0304375.

[109]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[110]  R. Sheth,et al.  Halo Models of Large Scale Structure , 2002, astro-ph/0206508.

[111]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[112]  R. Teyssier Cosmological hydrodynamics with adaptive mesh refinement , 2001, Astronomy & Astrophysics.

[113]  T. Theuns,et al.  The pinocchio algorithm: pinpointing orbit-crossing collapsed hierarchical objects in a linear density field , 2001, astro-ph/0109323.

[114]  R. Sheth,et al.  An excursion set model of hierarchical clustering: ellipsoidal collapse and the moving barrier , 2001, astro-ph/0105113.

[115]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[116]  R. Somerville,et al.  Profiles of dark haloes: evolution, scatter and environment , 1999, astro-ph/9908159.

[117]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999, astro-ph/9901122.

[118]  G. Tormen THE ASSEMBLY OF MATTER IN GALAXY CLUSTERS , 1998 .

[119]  Max Tegmark,et al.  Weighing Neutrinos with Galaxy Surveys , 1997, astro-ph/9712057.

[120]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[121]  E. Bertschinger,et al.  A CALCULATION OF THE FULL NEUTRINO PHASE SPACE IN COLD + HOT DARK MATTER MODELS , 1993, astro-ph/9308006.

[122]  J. Holtzman,et al.  Structure formation with cold plus hot dark matter , 1993, astro-ph/9305011.

[123]  D. Schlegel,et al.  Large-scale structure in a universe with mixed hot and cold dark matter , 1992, Nature.

[124]  J. L. Culhane,et al.  Mullard Space Science Laboratory - University College - London , 1984 .

[125]  J. R. Bond,et al.  Massive neutrinos and the large-scale structure of the Universe , 1980 .

[126]  Y. Zel’dovich Gravitational instability: An Approximate theory for large density perturbations , 1969 .

[127]  D. Hristopulos Simulations , 2020, Advances in Geographic Information Science.

[128]  R. Teyssier A new high resolution code called RAMSES , 2008 .