Modulating Human Memory via Entrainment of Brain Oscillations

In the human brain, oscillations occur during neural processes that are relevant for memory. This has been demonstrated by a plethora of studies relating memory processes to specific oscillatory signatures. Several recent studies have gone beyond such correlative approaches and provided evidence supporting the idea that modulating oscillations via frequency-specific entrainment can alter memory functions. Such causal evidence is important because it allows distinguishing mechanisms directly related to memory from mere epiphenomenal oscillatory signatures of memory. This review provides an overview of stimulation studies using different approaches to entrain brain oscillations for modulating human memory. We argue that these studies demonstrate a causal link between brain oscillations and memory, speaking against an epiphenomenal perspective of brain oscillations.

[1]  Walter Paulus,et al.  Spatial Working Memory in Humans Depends on Theta and High Gamma Synchronization in the Prefrontal Cortex , 2016, Current Biology.

[2]  D. McCormick,et al.  Endogenous Electric Fields May Guide Neocortical Network Activity , 2010, Neuron.

[3]  N. Logothetis,et al.  Direct electrical stimulation of human cortex — the gold standard for mapping brain functions? , 2011, Nature Reviews Neuroscience.

[4]  Li-Huei Tsai,et al.  Noninvasive 40-Hz light flicker to recruit microglia and reduce amyloid beta load , 2018, Nature Protocols.

[5]  Paul Sauseng,et al.  The Importance of Sample Size for Reproducibility of tDCS Effects , 2016, Front. Hum. Neurosci..

[6]  Ju Lynn Ong,et al.  Effects of phase-locked acoustic stimulation during a nap on EEG spectra and declarative memory consolidation. , 2016, Sleep medicine.

[7]  Justin K. Rajendra,et al.  A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression , 2017, Molecular Psychiatry.

[8]  Charles N. Munyon,et al.  Visual-spatial memory may be enhanced with theta burst deep brain stimulation of the fornix: a preliminary investigation with four cases. , 2015, Brain : a journal of neurology.

[9]  Jan Born,et al.  Insights on auditory closed-loop stimulation targeting sleep spindles in slow oscillation up-states , 2019, Journal of Neuroscience Methods.

[10]  F. Castellanos,et al.  Entrainment of neural oscillations as a modifiable substrate of attention , 2014, Trends in Cognitive Sciences.

[11]  S. Hanslmayr,et al.  Entrainment of Prefrontal Beta Oscillations Induces an Endogenous Echo and Impairs Memory Formation , 2014, Current Biology.

[12]  D. Velis,et al.  Material-Specific Recognition Memory Deficits Elicited by Unilateral Hippocampal Electrical Stimulation , 2004, The Journal of Neuroscience.

[13]  Ned T. Sahin,et al.  Dynamic circuit motifs underlying rhythmic gain control, gating and integration , 2014, Nature Neuroscience.

[14]  J. Born,et al.  Auditory Closed-Loop Stimulation of the Sleep Slow Oscillation Enhances Memory , 2013, Neuron.

[15]  Sang Ah Lee,et al.  Electrical Stimulation in Hippocampus and Entorhinal Cortex Impairs Spatial and Temporal Memory , 2018, The Journal of Neuroscience.

[16]  B. Staresina,et al.  Memory Modulation by Weak Synchronous Deep Brain Stimulation: A Pilot Study , 2013, Brain Stimulation.

[17]  O. Jensen,et al.  Alpha Oscillations Serve to Protect Working Memory Maintenance against Anticipated Distracters , 2012, Current Biology.

[18]  A. Karim,et al.  Brain Oscillatory Substrates of Visual Short-Term Memory Capacity , 2009, Current Biology.

[19]  C. Chambers Registered Reports: A new publishing initiative at Cortex , 2013, Cortex.

[20]  Daniel J. R. Christensen,et al.  Sleep Drives Metabolite Clearance from the Adult Brain , 2013, Science.

[21]  C. Pavlides,et al.  Long-term potentiation in the dentate gyrus is induced preferentially on the positive phase of theta-rhythm. , 1988, Brain research.

[22]  C. Gerloff,et al.  Enhancement of long‐range EEG coherence by synchronous bifocal transcranial magnetic stimulation , 2008, The European journal of neuroscience.

[23]  Christopher K. Kovach,et al.  Mapping effective connectivity in the human brain with concurrent intracranial electrical stimulation and BOLD-fMRI , 2017, Journal of Neuroscience Methods.

[24]  Sang Ah Lee,et al.  Direct Electrical Stimulation of the Human Entorhinal Region and Hippocampus Impairs Memory , 2016, Neuron.

[25]  A. Pérez-Villalba Rhythms of the Brain, G. Buzsáki. Oxford University Press, Madison Avenue, New York (2006), Price: GB £42.00, p. 448, ISBN: 0-19-530106-4 , 2008 .

[26]  W. Paulus,et al.  Perturbation of theta-gamma coupling at the temporal lobe hinders verbal declarative memory , 2017, Brain Stimulation.

[27]  K. Paller,et al.  Acoustic Enhancement of Sleep Slow Oscillations and Concomitant Memory Improvement in Older Adults , 2017, Front. Hum. Neurosci..

[28]  J. Larson,et al.  Theta-burst LTP , 2015, Brain Research.

[29]  Benedict Shien Wei Ng,et al.  EEG phase patterns reflect the selectivity of neural firing. , 2013, Cerebral cortex.

[30]  Brent M. Berry,et al.  Evidence for verbal memory enhancement with electrical brain stimulation in the lateral temporal cortex , 2018, Brain : a journal of neurology.

[31]  José M. Reales,et al.  Binaural auditory beats affect long-term memory , 2019, Psychological research.

[32]  I. Fried,et al.  Memory enhancement and deep-brain stimulation of the entorhinal area. , 2012, The New England journal of medicine.

[33]  J. Fell,et al.  The role of phase synchronization in memory processes , 2011, Nature Reviews Neuroscience.

[34]  Cory S. Inman,et al.  Medial temporal lobe functional connectivity predicts stimulation-induced theta power , 2018, Nature Communications.

[35]  Jonathan Miller,et al.  Phase-tuned neuronal firing encodes human contextual representations for navigational goals , 2017, bioRxiv.

[36]  Bradley C. Lega,et al.  Closed-loop stimulation of temporal cortex rescues functional networks and improves memory , 2018, Nature Communications.

[37]  Kristoffer Hougaard Madsen,et al.  How to target inter-regional phase synchronization with dual-site Transcranial Alternating Current Stimulation , 2017, NeuroImage.

[38]  J. Williams,et al.  Frequency-specific effects of flicker on recognition memory , 2001, Neuroscience.

[39]  E. Boyden,et al.  Gamma frequency entrainment attenuates amyloid load and modifies microglia , 2016, Nature.

[40]  Christoph S. Herrmann,et al.  Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation , 2015, Front. Hum. Neurosci..

[41]  N. Logothetis,et al.  Scaling Brain Size, Keeping Timing: Evolutionary Preservation of Brain Rhythms , 2013, Neuron.

[42]  J. Lisman,et al.  The Theta-Gamma Neural Code , 2013, Neuron.

[43]  Christoph S. Herrmann,et al.  Targeting alpha-band oscillations in a cortical model with amplitude-modulated high-frequency transcranial electric stimulation , 2018, NeuroImage.

[44]  Brent M. Berry,et al.  Electrical Stimulation Modulates High γ Activity and Human Memory Performance , 2018, eNeuro.

[45]  Matthew J. Rollo,et al.  Network-based brain stimulation selectively impairs spatial retrieval , 2018, Brain Stimulation.

[46]  K. Bäuml,et al.  The Relationship between Brain Oscillations and BOLD Signal during Memory Formation: A Combined EEG–fMRI Study , 2011, The Journal of Neuroscience.

[47]  O. Jensen,et al.  Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition , 2010, Front. Hum. Neurosci..

[48]  R. Zatorre,et al.  Selective Entrainment of Theta Oscillations in the Dorsal Stream Causally Enhances Auditory Working Memory Performance , 2017, Neuron.

[49]  Michael J. Jutras,et al.  Direct Brain Stimulation Modulates Encoding States and Memory Performance in Humans , 2017, Current Biology.

[50]  Emery N. Brown,et al.  Author Correction: Gamma frequency entrainment attenuates amyloid load and modifies microglia , 2018, Nature.

[51]  Christopher K. Kovach,et al.  Direct electrical stimulation of the amygdala enhances declarative memory in humans , 2017, Proceedings of the National Academy of Sciences.

[52]  Arne D. Ekstrom,et al.  A network approach for modulating memory processes via direct and indirect brain stimulation: Toward a causal approach for the neural basis of memory , 2016, Neurobiology of Learning and Memory.

[53]  S. Hanslmayr,et al.  Oscillatory power decreases and long-term memory: the information via desynchronization hypothesis , 2012, Front. Hum. Neurosci..

[54]  H. Danker-Hopfe,et al.  Slow oscillatory transcranial direct current stimulation (so-tDCS) during slow wave sleep has no effects on declarative memory in healthy young subjects , 2019, Brain Stimulation.

[55]  A. Engel,et al.  EEG oscillations: From correlation to causality. , 2016, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[56]  Katsuhiro Kobayashi,et al.  Memory enhancement and deep-brain stimulation of the entorhinal area. , 2012, The New England journal of medicine.

[57]  D. Durand,et al.  Low‐frequency electrical stimulation of a fiber tract in temporal lobe epilepsy , 2013, Annals of neurology.

[58]  A. Lozano,et al.  Deep Brain Stimulation for Treatment-Resistant Depression , 2005, Neuron.

[59]  N. Logothetis,et al.  Frequency-Band Coupling in Surface EEG Reflects Spiking Activity in Monkey Visual Cortex , 2009, Neuron.

[60]  Arne D. Ekstrom,et al.  Frequency–specific network connectivity increases underlie accurate spatiotemporal memory retrieval , 2013, Nature Neuroscience.

[61]  Andreas Nieder,et al.  Structuring of Abstract Working Memory Content by Fronto-parietal Synchrony in Primate Cortex , 2018, Neuron.

[62]  W. Klimesch,et al.  EEG alpha oscillations: The inhibition–timing hypothesis , 2007, Brain Research Reviews.

[63]  C. Miniussi,et al.  New insights into rhythmic brain activity from TMS–EEG studies , 2009, Trends in Cognitive Sciences.

[64]  J. Born,et al.  Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding , 2009, Proceedings of the National Academy of Sciences.

[65]  K. Paller,et al.  Using Oscillating Sounds to Manipulate Sleep Spindles , 2017, Sleep.

[66]  J E Lisman,et al.  Storage of 7 +/- 2 short-term memories in oscillatory subcycles , 1995, Science.

[67]  Jürgen Kurths,et al.  Modification of Brain Oscillations via Rhythmic Light Stimulation Provides Evidence for Entrainment but Not for Superposition of Event-Related Responses , 2016, Front. Hum. Neurosci..

[68]  C. Pavlides,et al.  Long-term potentiation in the dentate gyrus is induced preferentially on the positive phase of θ-rhythm , 1988, Brain Research.

[69]  M. Hasselmo,et al.  Stimulation in Hippocampal Region CA1 in Behaving Rats Yields Long-Term Potentiation when Delivered to the Peak of Theta and Long-Term Depression when Delivered to the Trough , 2003, The Journal of Neuroscience.

[70]  Jeffrey G. Ojemann,et al.  Power-Law Scaling in the Brain Surface Electric Potential , 2009, PLoS Comput. Biol..

[71]  Richard J. Addante,et al.  Entrainment enhances theta oscillations and improves episodic memory , 2018, Cognitive neuroscience.

[72]  Simon Hanslmayr,et al.  Single-Trial Phase Entrainment of Theta Oscillations in Sensory Regions Predicts Human Associative Memory Performance , 2018, The Journal of Neuroscience.

[73]  L. Parra,et al.  Low frequency transcranial electrical stimulation does not entrain sleep rhythms measured by human intracranial recordings , 2017, Nature Communications.

[74]  Alik S Widge,et al.  Altering alpha-frequency brain oscillations with rapid analog feedback-driven neurostimulation , 2018, PloS one.

[75]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[76]  Praveen K. Pilly,et al.  Transcranial alternating current stimulation entrains single-neuron activity in the primate brain , 2019, Proceedings of the National Academy of Sciences.

[77]  E D Adrian,et al.  The interpretation of potential waves in the cortex , 1934, The Journal of physiology.

[78]  Vincenzo Romei,et al.  The speed of parietal theta frequency drives visuospatial working memory capacity , 2018, PLoS biology.

[79]  Itzhak Fried,et al.  Theta-burst microstimulation in the human entorhinal area improves memory specificity , 2017, eLife.

[80]  B. Nolan Boosting slow oscillations during sleep potentiates memory , 2008 .

[81]  A. Engel,et al.  Spectral fingerprints of large-scale neuronal interactions , 2012, Nature Reviews Neuroscience.

[82]  Flavio Fröhlich,et al.  High-density EEG characterization of brain responses to auditory rhythmic stimuli during wakefulness and NREM sleep , 2018, NeuroImage.

[83]  J. Lisman,et al.  Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro , 1995, Neuron.

[84]  A. Engel,et al.  Selective Modulation of Interhemispheric Functional Connectivity by HD-tACS Shapes Perception , 2014, PLoS biology.

[85]  Brian A. Nosek,et al.  Power failure: why small sample size undermines the reliability of neuroscience , 2013, Nature Reviews Neuroscience.

[86]  B. Staresina,et al.  Oscillations and Episodic Memory: Addressing the Synchronization/Desynchronization Conundrum , 2016, Trends in Neurosciences.

[87]  M. Berger,et al.  High Gamma Power Is Phase-Locked to Theta Oscillations in Human Neocortex , 2006, Science.

[88]  Robert Leech,et al.  Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance , 2017, eLife.

[89]  N. Axmacher,et al.  Electrical engram: how deep brain stimulation affects memory , 2013, Trends in Cognitive Sciences.

[90]  M. Nitsche,et al.  The Importance of Timing in Segregated Theta Phase-Coupling for Cognitive Performance , 2012, Current Biology.

[91]  Nikolai Axmacher,et al.  Intracranial electroencephalography power and phase synchronization changes during monaural and binaural beat stimulation , 2015, The European journal of neuroscience.

[92]  Rufin VanRullen,et al.  Perceptual Echoes at 10 Hz in the Human Brain , 2012, Current Biology.

[93]  G. Lynch,et al.  Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation , 1986, Brain Research.

[94]  P. Schyns,et al.  Rhythmic TMS Causes Local Entrainment of Natural Oscillatory Signatures , 2011, Current Biology.

[95]  Marinella Cappelletti,et al.  Alpha Oscillations Are Causally Linked to Inhibitory Abilities in Ageing , 2018, The Journal of Neuroscience.

[96]  K. Shapiro,et al.  Theta Phase Synchronization Is the Glue that Binds Human Associative Memory , 2017, Current Biology.

[97]  Peter Lakatos,et al.  Dynamics of Active Sensing and perceptual selection , 2010, Current Opinion in Neurobiology.

[98]  C. Herrmann,et al.  Non-invasive Brain Stimulation: A Paradigm Shift in Understanding Brain Oscillations , 2018, Front. Hum. Neurosci..

[99]  M. George,et al.  Oscillating Square Wave Transcranial Direct Current Stimulation (tDCS) Delivered During Slow Wave Sleep Does Not Improve Declarative Memory More Than Sham: A Randomized Sham Controlled Crossover Study , 2015, Brain Stimulation.

[100]  Mark D'Esposito,et al.  Causal Evidence for the Role of Neuronal Oscillations in Top–Down and Bottom–Up Attention , 2019, Journal of Cognitive Neuroscience.

[101]  P. Uhlhaas,et al.  Working memory and neural oscillations: alpha–gamma versus theta–gamma codes for distinct WM information? , 2014, Trends in Cognitive Sciences.

[102]  J. Fell,et al.  Cross-frequency coupling supports multi-item working memory in the human hippocampus , 2010, Proceedings of the National Academy of Sciences.