Controlled electrochemical hydridation of Ti surfaces – optimisation and electrochemical properties

[1]  K. Bouzek,et al.  Introducing titanium hydride on porous transport layer for more energy efficient water electrolysis with proton exchange membrane , 2023, Journal of Power Sources.

[2]  K. Wippermann,et al.  Constructing a Multifunctional Interface between Membrane and Porous Transport Layer for Water Electrolyzers. , 2021, ACS applied materials & interfaces.

[3]  T. Morawietz,et al.  Exploring the Interface of Skin‐Layered Titanium Fibers for Electrochemical Water Splitting , 2021, Advanced Energy Materials.

[4]  Shaopeng Liu,et al.  Effect of Hydrogen Precharging on Mechanical and Electrochemical Properties of Pure Titanium , 2020, Advanced Engineering Materials.

[5]  James L. Young,et al.  Performance enhancement of PEM electrolyzers through iridium-coated titanium porous transport layers , 2018, Electrochemistry Communications.

[6]  Xiaogang Li,et al.  Surface characterization of the commercially pure titanium after hydrogen charging and its electrochemical characteristics in artificial seawater , 2018, Journal of Electroanalytical Chemistry.

[7]  Detlef Stolten,et al.  The stability challenge on the pathway to high-current-density polymer electrolyte membrane water electrolyzers , 2018, Electrochimica Acta.

[8]  T. Prošek,et al.  Techniques for investigation of hydrogen embrittlement of advanced high strength steels , 2018 .

[9]  K. Sundmacher,et al.  Enhancing PEM water electrolysis efficiency by reducing the extent of Ti gas diffusion layer passivation , 2018, Journal of Applied Electrochemistry.

[10]  Kai Sundmacher,et al.  Effect of the MEA design on the performance of PEMWE single cells with different sizes , 2018, Journal of Applied Electrochemistry.

[11]  Scott T. Retterer,et al.  Thin film surface modifications of thin/tunable liquid/gas diffusion layers for high-efficiency proton exchange membrane electrolyzer cells , 2017 .

[12]  Uwe Reimer,et al.  An analysis of degradation phenomena in polymer electrolyte membrane water electrolysis , 2016 .

[13]  Lei Zhou,et al.  Behavior of acid etching on titanium: topography, hydrophility and hydrogen concentration , 2013, Biomedical materials.

[14]  Andrea R. Gerson,et al.  Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn , 2010 .

[15]  M. Monjo,et al.  Hydride formation on titanium surfaces by cathodic polarization , 2008 .

[16]  Hiroshi Kono,et al.  Surface modification of titanium by etching in concentrated sulfuric acid. , 2006, Dental materials : official publication of the Academy of Dental Materials.

[17]  D. Shoesmith,et al.  Hydrogen absorption into alpha titanium in acidic solutions , 2006 .

[18]  D. Eliezer,et al.  The hydrogen embrittlement of titanium-based alloys , 2005 .

[19]  K. Riahi,et al.  The hydrogen economy in the 21st century: a sustainable development scenario , 2003 .

[20]  Jiann-Kuo Wu,et al.  Effects of electrolytic hydrogenating parameters on structure and composition of surface hydrides of CP-Ti and Ti–6Al–4V alloy , 2002 .

[21]  D. Devilliers,et al.  Structure and composition of passive titanium oxide films , 1997 .

[22]  J. Krýsa,et al.  Experimental investigation of the double layer capacity, X-ray diffraction and the relative surface content of TiH2 during pretreatment of titanium used for the preparation of dimensionally stable anodes with RuO2 and/or IrO2 coating , 1995 .

[23]  R. Ornelas,et al.  Deactivation mechanisms of oxygen evolving anodes at high current densities , 1994 .

[24]  S. Trasatti,et al.  Origin of ohmic losses at Co3O4/Ti electrodes , 1994 .

[25]  H. K. Wickramasinghe,et al.  Kelvin probe force microscopy , 1991 .

[26]  A. P. Grande,et al.  Electrochemical and SIMS studies of cathodically formed hydride layers on titanium , 1990 .

[27]  H. Bronstein,et al.  Kinetics and Mechanism of the Hydrogen Evolution Reaction on Titanium in Acidic Media , 1984 .

[28]  T. Okada Factors influencing the cathodic charging efficiency of hydrogen by modified titanium electrodes , 1983 .

[29]  E. Brauer,et al.  Kinetics and Mechanism of Hydrogen Diffusion in Hydrides of Titanium, Zirconium and TiNi0.5 , 1983 .

[30]  M. Givon,et al.  The electrochemical formation of titanium hydride , 1982 .

[31]  T. Okada The effects of surface modification of titanium on the absorption rate of hydrogen during cathodic polarization , 1982 .

[32]  H. Beer The Invention and Industrial Development of Metal Anodes , 1980 .

[33]  L. Covington The Influence of Surface Condition and Environment on the Hydriding of Titanium , 1979 .

[34]  R. K. Quinn,et al.  Electrochemical and Surface Analytical Characterization of Titanium and Titanium Hydride Thin Film Electrode Oxidation , 1978 .

[35]  T. Morozumi,et al.  Growth Rate of Hydride Layer Produced on Titanium Surface by Cathodic Polarization , 1977 .

[36]  E. Asselin,et al.  Electrochemical Investigation and Identification of Titanium Hydrides Formed in Mixed Chloride Sulfuric Acid Solution , 2019, Journal of The Electrochemical Society.

[37]  L. Shreir,et al.  Hydride formation during cathodic polarization of Ti—II. Effect of temperature and pH of solution on hydride growth , 1974 .

[38]  L. Shreir,et al.  Hydride formation during cathodicpolarization of Ti—I. Effect of current density on kinetics of growth and composition of hydride , 1972 .