Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments—a review

The hygroscopic properties play a vital role for the direct and indirect effects of aerosols on climate, as well as the health effects of particulate matter (PM) by modifying the deposition pattern of inhaled particles in the humid human respiratory tract. Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA) instruments have been used in field campaigns in various environments globally over the last 25 yr to determine the water uptake on submicrometre particles at subsaturated conditions. These investigations have yielded valuable and comprehensive information regarding the particle hygroscopic properties of the atmospheric aerosol, including state of mixing. These properties determine the equilibrium particle size at ambient relative humidities and have successfully been used to calculate the activation of particles at water vapour supersaturation. This paper summarizes the existing published H-TDMA results on the sizeresolved submicrometre aerosol particle hygroscopic properties obtained from ground-based measurements at multiple marine, rural, urban and free tropospheric measurement sites. The data is classified into groups of hygroscopic growth indicating the external mixture, and providing clues to the sources and processes controlling the aerosol. An evaluation is given on how different chemical and physical properties affect the hygroscopic growth.

[1]  R. Robinson,et al.  Interactions in Aqueous Nonelectrolyte Solutions. I. Solute-Solvent Equilibria , 1966 .

[2]  Richard C. Flagan,et al.  Scanning Electrical Mobility Spectrometer , 1989 .

[3]  Timothy S. Bates,et al.  Regional aerosol properties: Comparisons of boundary layer measurements from ACE 1, ACE 2, Aerosols99, INDOEX, ACE Asia, TARFOX, and NEAQS , 2005 .

[4]  S. Hering,et al.  Mixing characteristics and water content of submicron aerosols measured in Los Angeles and at the grand canyon , 1993 .

[5]  K. Lehtinen,et al.  Is nucleation capable of explaining observed aerosol integral number increase during southerly transport over Scandinavia? , 2006 .

[6]  Y. Ming,et al.  Thermodynamic equilibrium of organic‐electrolyte mixtures in aerosol particles , 2002 .

[7]  J. Curry,et al.  Refinements to the Köhler's theory of aerosol equilibrium radii, size spectra, and droplet activation: Effects of humidity and insoluble fraction , 2007 .

[8]  M. Facchini,et al.  Importance of the organic aerosol fraction for modeling aerosol hygroscopic growth and activation: a case study in the Amazon Basin , 2005 .

[9]  C. Rodgers,et al.  Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation , 1976 .

[10]  Sonia M. Kreidenweis,et al.  Water activity and activation diameters from hygroscopicity data - Part I: Theory and application to inorganic salts , 2005 .

[11]  Peter H. McMurry,et al.  Study of the ammonia (gas)-sulfuric acid (aerosol) reaction rate , 1983 .

[12]  Hanna Vehkamäki,et al.  Formation and growth rates of ultrafine atmospheric particles: a review of observations , 2004 .

[13]  D. Randall,et al.  Climate models and their evaluation , 2007 .

[14]  S. Kreidenweis,et al.  Predicting Particle Critical Supersaturation from Hygroscopic Growth Measurements in the Humidified TDMA. Part II: Laboratory and Ambient Studies , 2000 .

[15]  Y. Ming,et al.  Deliquescence of small particles , 2002 .

[16]  H. Hansson,et al.  High Natural Aerosol Loading over Boreal Forests , 2006, Science.

[17]  M. Wendisch,et al.  Cloud droplet nucleation scavenging in relation to the size and hygroscopic behaviour of aerosol particles , 1997 .

[18]  H. Hansson,et al.  NaCl Aerosol Particle Hygroscopicity Dependence on Mixing with Organic Compounds , 1998 .

[19]  Martin Gysel,et al.  A modified hygroscopic tandem DMA and a data retrieval method based on optimal estimation , 2005 .

[20]  L. Morawska,et al.  Application of the VH‐TDMA technique to coastal ambient aerosols , 2004 .

[21]  C. Rodgers Characterization and Error Analysis of Profiles Retrieved From Remote Sounding Measurements , 1990 .

[22]  H. Hansson,et al.  Hygroscopic growth of aerosol particles in the Po Valley , 1992 .

[23]  K. T. Whitby,et al.  The aerosol mobility chromatograph: A new detector for sulfuric acid aerosols , 1978 .

[24]  J. Jimenez,et al.  The characterisation of pollution aerosol in a changing photochemical environment , 2005 .

[25]  T. Bates,et al.  Hygroscopic properties of different aerosol types over the Atlantic and Indian Oceans , 2003 .

[26]  A. Wiedensohler,et al.  A Tandem DMA for highly temperature-stabilized hygroscopic particle growth measurements between 90% and 98% relative humidity , 2005 .

[27]  J. Santarpia,et al.  Direct measurement of the hydration state of ambient aerosol populations , 2004 .

[28]  R. Dingenen,et al.  Hygroscopic properties of aerosol formed by oxidation of limonene, α‐pinene, and β‐pinene , 1999 .

[29]  J. Putaud,et al.  Urban and rural aerosol characterization of summer smog events during the PIPAPO field campaign in Milan, Italy , 2002 .

[30]  A. Wiedensohler,et al.  Diurnal, weekly, and seasonal variation of hygroscopic properties of submicrometer urban aerosol particles , 2005 .

[31]  T. Petäjä,et al.  Hygroscopic properties of ultrafine aerosol particles in the boreal forest: diurnal variation, solubility and the influence of sulfuric acid , 2006 .

[32]  H. Hansson,et al.  Hygroscopic growth of aerosol particles and its influence on nucleation scavenging in cloud: Experimental results from Kleiner Feldberg , 1994 .

[33]  H. Hansson,et al.  Submicrometer aerosol particle size distribution and hygroscopic growth measured in the Amazon rain forest during the wet season , 2002 .

[34]  Harri Kokkola,et al.  Cloud formation of particles containing humic‐like substances , 2006 .

[35]  L. Morawska,et al.  Method for measuring the hygroscopic behaviour of lower volatility fractions in an internally mixed aerosol , 2004 .

[36]  D. Covert,et al.  Cloud condensation nuclei spectra derived from size distributions and hygroscopic properties of the aerosol in coastal south-west Portugal during ACE-2 , 2003 .

[37]  J. Joutsensaari,et al.  Time-resolved growth behavior of acid aerosols in ethanol vapor with a tandem-DMA technique , 2004 .

[38]  J. Seinfeld,et al.  Studies of concentrated electrolyte solutions using the electrodynamic balance. 1. Water activities for single-electrolyte solutions , 1987 .

[39]  R. Synovec,et al.  Dissolution behavior and surface tension effects of organic compounds in nucleating cloud droplets , 1996 .

[40]  Hugh Coe,et al.  A curved multi-component aerosol hygroscopicity model framework: Part 1 Inorganic compounds , 2005 .

[41]  C. Chan,et al.  The effects of organic species on the hygroscopic behaviors of inorganic aerosols. , 2002, Environmental science & technology.

[42]  D. Collins,et al.  Physical and chemical properties of the aerosol within the southeastern Pacific marine boundary layer , 2007 .

[43]  Ü. Rannik,et al.  Turbulent aerosol fluxes over the Arctic Ocean , 2001 .

[44]  Martin Gysel,et al.  Hygroscopic properties of water-soluble matter and humic-like organics in atmospheric fine aerosol , 2003 .

[45]  Thomas Peter,et al.  Mixing of the Organic Aerosol Fractions: Liquids as the Thermodynamically Stable Phases , 2004 .

[46]  E. Keith Bigg,et al.  Source and evolution of the marine aerosol—A new perspective , 2005 .

[47]  D. Ceburnis,et al.  Biogenically driven organic contribution to marine aerosol , 2004, Nature.

[48]  V. Kerminen The effects of particle chemical character and atmospheric processes on particle hygroscopic properties , 1997 .

[49]  M. Väkevä,et al.  Hygroscopic properties and state of mixing of nucleation mode particles , 2001 .

[50]  Jonathan Crosier,et al.  Hygroscopicity of the submicrometer aerosol at the high-alpine site Jungfraujoch, 3580 m a.s.l., Switzerland , 2007 .

[51]  K. Hämeri,et al.  Hygroscopic properties of aerosol particles over the central Arctic Ocean during summer , 2001 .

[52]  P. Quinn,et al.  Closure in tropospheric aerosol-climate research : A review and future needs for addressing aerosol direct shortwave radiative forcing , 1996 .

[53]  M. Rood,et al.  Influence of Soluble Surfactant Properties on the Activation of Aerosol Particles Containing Inorganic Solute , 1998 .

[54]  J. Seinfeld,et al.  Organics alter hygroscopic behavior of atmospheric particles , 1995 .

[55]  J. Hemminger,et al.  Effect of Water on the HNO3 Pressure Dependence of the Reaction between Gas-Phase HNO3 and NaCl Surfaces , 1999 .

[56]  S. Pandis,et al.  Cloud condensation nuclei activation of monoterpene and sesquiterpene secondary organic aerosol , 2005 .

[57]  H. Jonsson,et al.  Organics in the Northeastern Pacific and their impacts on aerosol hygroscopicity in the subsaturated and supersaturated regimes , 2006 .

[58]  J. Seinfeld,et al.  Hygroscopic Properties of Pasadena, California Aerosol , 2001 .

[59]  J. Seinfeld,et al.  Thermodynamic modelling of aqueous aerosols containing electrolytes and dissolved organic compounds. II. An extended Zdanovskii–Stokes–Robinson approach , 2003 .

[60]  Joakim Pagels,et al.  Size-Resolved Respiratory-Tract Deposition of Fine and Ultrafine Hydrophobic and Hygroscopic Aerosol Particles During Rest and Exercise , 2007, Inhalation toxicology.

[61]  Erik Swietlicki,et al.  Hygroscopic growth and critical supersaturations for mixed aerosol particles of inorganic and organic compounds of atmospheric relevance , 2005 .

[62]  M. Väkevä,et al.  Hygroscopic properties of nucleation mode and Aitken mode particles during nucleation bursts and in background air on the west coast of Ireland , 2002 .

[63]  E. Nilsson,et al.  Laboratory simulations and parameterization of the primary marine aerosol production , 2003 .

[64]  J. M. Mäkelä,et al.  On the formation, growth and composition of nucleation mode particles , 2001 .

[65]  L. M. Russell,et al.  Nanosize Effect on the Deliquescence and the Efflorescence of Sodium Chloride Particles , 2006 .

[66]  Maria Cristina Facchini,et al.  Surface tensions of multi-component mixed inorganic/organic aqueous systems of atmospheric significance: measurements, model predictions and importance for cloud activation predictions , 2006 .

[67]  A. Wexler,et al.  Atmospheric aerosol models for systems including the ions H+, NH4+, Na+, SO42−, NO3−, Cl−, Br−, and H2O , 2002 .

[68]  J. Putaud,et al.  Physical aerosol properties and their relation to air mass origin at Monte Cimone (Italy) during the first MINATROC campaign , 2005 .

[69]  Maria Cristina Facchini,et al.  The effect of physical and chemical aerosol properties on warm cloud droplet activation , 2005 .

[70]  L. Morawska,et al.  Hygroscopic behavior of partially volatilized coastal marine aerosols using the volatilization and humidification tandem differential mobility analyzer technique , 2005 .

[71]  F. Stratmann,et al.  Inversion algorithm for TDMA measurements , 1997 .

[72]  Sonia M. Kreidenweis,et al.  Hygroscopicity of particles at two rural, urban influenced sites during Pacific 2001: Comparison with estimates of water uptake from particle composition , 2006 .

[73]  F. Jeng,et al.  Hygroscopic behavior of atmospheric aerosol in Taipei , 2003 .

[74]  P. Chuang Measurement of the timescale of hygroscopic growth for atmospheric aerosols , 2003 .

[75]  M. Facchini,et al.  Size-segregated aerosol chemical composition at a boreal site in southern Finland, during the QUEST project , 2005 .

[76]  H. Reiss,et al.  A theory for the deliquescence of small particles , 2000 .

[77]  P. Reilly,et al.  Prediction of the properties of mixed electrolytes from measurements on common ion mixtures , 1969 .

[78]  David B Kittelson,et al.  Chemical and physical properties of ultrafine diesel exhaust particles sampled downstream of a catalytic trap. , 2006, Environmental science & technology.

[79]  C. Chan,et al.  Mass transfer effects in hygroscopic measurements of aerosol particles , 2005 .

[80]  S. Pandis,et al.  Deliquescence and Hygroscopic Growth of Mixed Inorganic−Organic Atmospheric Aerosol , 2000 .

[81]  W. Malm,et al.  The effects of models of aerosol hygroscopicity on the apportionment of extinction , 1997 .

[82]  L. Schütz,et al.  Climatology of the average water-soluble volume fraction of atmospheric aerosol , 2007 .

[83]  M. Väkevä,et al.  Hygroscopic growth of ultrafine sodium chloride particles , 2001 .

[84]  Hugh Coe,et al.  A curved multi-component aerosol hygroscopicity model framework: Part 2 - Including organic compounds , 2005 .

[85]  J. Smith,et al.  Hygroscopicity and volatility of 4-10 nm particles during summertime atmospheric nucleation events in urban Atlanta , 2005 .

[86]  M. Andreae,et al.  Physical properties of the sub-micrometer aerosol over the Amazon rain forest during the wet-to-dry season transition - comparison of modeled and measured CCN concentrations , 2004 .

[87]  C. Chan,et al.  Continuous Measurements of the Water Activities of Aqueous Droplets of Water-Soluble Organic Compounds , 2002 .

[88]  John H. Seinfeld,et al.  Cloud condensation nucleus (CCN) behavior of organic aerosol particles generated by atomization of water and methanol solutions , 2007 .

[89]  Jonathan Crosier,et al.  © Author(s) 2007. This work is licensed under a Creative Commons License. Atmospheric Chemistry and Physics A revised linear ozone photochemistry parameterization for use in transport and general circulation models: multi-annual simulations , 2006 .

[90]  Yrjö Viisanen,et al.  Direct observational evidence linking atmospheric aerosol formation and cloud droplet activation , 2005 .

[91]  H. Köhler The nucleus in and the growth of hygroscopic droplets , 1936 .

[92]  I. Tang,et al.  Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance , 1994 .

[93]  R. Ferrare,et al.  Application of aerosol hygroscopicity measured at the Atmospheric Radiation Measurement Program's Southern Great Plains site to examine composition and evolution , 2006 .

[94]  H. P. Tappan Of the sensitivity. , 1840 .

[95]  G. Ewing,et al.  Water Content and Morphology of Sodium Chloride Aerosol Particles , 1999 .

[96]  G. A. Elliott Thermodynamic Equilibrium , 1950, Nature.

[97]  Arto Voutilainen,et al.  A NON-HOMOGENEOUS REGULARIZATION METHOD FOR THE ESTIMATION OF NARROW AEROSOL SIZE DISTRIBUTIONS , 2000 .

[98]  S. Kreidenweis,et al.  under a Creative Commons License. Atmospheric Chemistry and Physics Water activity and activation diameters from hygroscopicity data – , 2006 .

[99]  D. Covert,et al.  Hygroscopic properties of aerosol particles in the north-eastern Atlantic during ACE-2 , 2000 .

[100]  M. Mozurkewich,et al.  Determination of External and Internal Mixing of Organic and Inorganic Aerosol Components from Hygroscopic Properties of Submicrometer Particles During a Field Study in the Lower Fraser Valley , 2004 .

[101]  I. Tang Thermodynamic and optical properties of mixed‐salt aerosols of atmospheric importance , 1997 .

[102]  K. Hämeri,et al.  A novel tandem differential mobility analyzer with organic vapor treatment of aerosol particles , 2001 .

[103]  E. Swietlicki,et al.  Hygroscopic Behavior of Aerosol Particles Emitted from Biomass Fired Grate Boilers , 2005 .

[104]  Kaarle Hämeri,et al.  Effects of meteorological processes on aerosol particle size distribution in an urban background area , 2000 .

[105]  M. Muir Physical Chemistry , 1888, Nature.

[106]  Martin Gysel,et al.  Hygroscopic growth and water uptake kinetics of two-phase aerosol particles consisting of ammonium sulfate, adipic and humic acid mixtures , 2007 .

[107]  A. Clarke,et al.  Secondary aerosol formation in continental outflow conditions during ACE-Asia , 2004 .

[108]  P. Mcmurry,et al.  Estimation of water uptake by organic compounds in submicron aerosols measured during the Southeastern Aerosol and Visibility Study , 2000 .

[109]  E. Swietlicki,et al.  Hygroscopic growth of aerosol particles in the marine boundary layer over the Pacific and Southern Oceans during the First Aerosol Characterization Experiment (ACE 1) , 1998 .

[110]  J. Schauer,et al.  Observations of elemental carbon and absorption during ACE‐Asia and implications for aerosol radiative properties and climate forcing , 2003 .

[111]  K. H. Fung,et al.  Thermodynamic and optical properties of sea salt aerosols , 1997 .

[112]  M. Andreae,et al.  Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia , 2005 .

[113]  Ü. Rannik,et al.  Turbulent aerosol fluxes over the Arctic Ocean: 2. Wind‐driven sources from the sea , 2001 .

[114]  Reinhard Niessner,et al.  Interaction of aerosol particles composed of protein and salts with water vapor: hygroscopic growth and microstructural rearrangement , 2003 .

[115]  Hugh Coe,et al.  Simplification of the representation of the organic component of atmospheric particulates. , 2005, Faraday discussions.

[116]  M. Schnaiter,et al.  Coating of soot and (NH4)2SO4 particles by ozonolysis products of α-pinene , 2003 .

[117]  Erik Swietlicki,et al.  Organic aerosol and global climate modelling: a review , 2004 .

[118]  M. Andreae,et al.  Internal Mixture of Sea Salt, Silicates, and Excess Sulfate in Marine Aerosols , 1986, Science.

[119]  M. Stolzenburg,et al.  On the sensitivity of particle size to relative humidity for Los Angeles aerosols , 1989 .

[120]  S. Leinert,et al.  Hygroscopic growth of sub-micrometer and one-micrometer aerosol particles measured during ACE-Asia , 2006 .

[121]  M. Facchini,et al.  Cloud albedo enhancement by surface-active organic solutes in growing droplets , 1999, Nature.

[122]  M. Andreae,et al.  Cloud-nucleating properties of the Amazonian biomass burning aerosol: Cloud condensation nuclei measurements and modeling , 2007 .

[123]  H. Hansson,et al.  Hygroscopic properties of mixed ammonium sulfate and carboxylic acids particles , 2002 .

[124]  D. Rader,et al.  TANDEM DIFFERENTIAL MOBILITY ANALYZER. , 1986 .

[125]  T. Petäjä,et al.  Effects of SO 2 oxidation on ambient aerosol growth in water and ethanol vapours , 2004 .

[126]  T. Petäjä,et al.  Sub-micron atmospheric aerosols in the surroundings of Marseille and Athens: physical characterization and new particle formation , 2006 .

[127]  Erik Swietlicki,et al.  A closure study of sub-micrometer aerosol particle hygroscopic behaviour , 1999 .

[128]  Pasi Aalto,et al.  Aerosol formation: Atmospheric particles from organic vapours , 2002, Nature.

[129]  K. Sekigawa Estimation of the Volume Fraction of Water Soluble Material in Submicron Aerosols in the Atmosphere , 1983 .

[130]  P. Laj,et al.  Comparison of observed and modeled hygroscopic behavior of atmospheric particles , 1998 .

[131]  C. O'Dowd,et al.  Hygroscopic and CCN properties of aerosol particles in boreal forests , 2001 .

[132]  H. Hansson,et al.  Hygroscopic growth of ultrafine ammonium sulphate aerosol measured using an ultrafine tandem differential mobility analyzer , 2000 .

[133]  R. Charlson,et al.  Correction to "Dissolution behavior and surface tension effects of organic compounds in nucleating cloud droplets" by Michelle L. Shulman, , 1996 .

[134]  Sonia M. Kreidenweis,et al.  Hygroscopic growth behavior of a carbon-dominated aerosol in Yosemite National Park , 2005 .

[135]  C. Neusüss,et al.  Hygroscopic properties and water-soluble volume fraction of atmospheric particles in the diameter range from 50 nm to 3.8 μm during LACE 98 , 2002 .

[136]  C. Chan,et al.  The water cycles of water-soluble organic salts of atmospheric importance , 2001 .

[137]  A. Laaksonen,et al.  Atmospheric Chemistry and Physics The role of surfactants in Köhler theory reconsidered , 2004 .

[138]  H. Burtscher,et al.  Hygroscopic properties of carbon and diesel soot particles , 1997 .

[139]  Y. Ming,et al.  Predicted hygroscopic growth of sea salt aerosol , 2001 .

[140]  S. Kreidenweis,et al.  Predicting Particle Critical Supersaturation from Hygroscopic Growth Measurements in the Humidified TDMA. Part I: Theory and Sensitivity Studies , 2000 .

[141]  J. Simonson,et al.  A BET model of the thermodynamics of aqueous multicomponent solutions at extreme concentration , 2001 .

[142]  J. Heyder,et al.  Ambient particles at an urban, semi-urban and rural site in Central Europe: hygroscopic properties , 2005 .

[143]  U. Baltensperger,et al.  Hygroscopicity of aerosol particles at low temperatures. 2. Theoretical and experimental hygroscopic properties of laboratory generated aerosols. , 2002, Environmental science & technology.

[144]  C. Chan,et al.  Hygroscopic properties of two model humic-like substances and their mixtures with inorganics of atmospheric importance. , 2003, Environmental science & technology.

[145]  B. Turpin,et al.  Elemental composition and morphology of individual particles separated by size and hygroscopicity with the TDMA , 1996 .

[146]  J. Hemminger,et al.  Physical Chemistry of Airborne Sea Salt Particles and Their Components , 2000 .

[147]  M Gysel,et al.  Hygroscopicity of aerosol particles at low temperatures. 1. New low-temperature H-TDMA instrument: setup and first applications. , 2002, Environmental science & technology.

[148]  Claudia Marcolli,et al.  Phase changes during hygroscopic cycles of mixed organic/inorganic model systems of tropospheric aerosols. , 2006, The journal of physical chemistry. A.

[149]  J. Berg Chapter V – The Role of Surfactants , 2002 .

[150]  M. Pitchford,et al.  Relationship between measured water vapor growth and chemistry of atmospheric aerosol for Grand Canyon, Arizona, in winter 1990 , 1994 .

[151]  P. Chylek,et al.  Erroneous Use of the Modified Kohler Equation in Cloud and Aerosol Physics Applications , 1998 .