Negative moment of inertia and rotational instability of gluon plasma

Using first-principle numerical simulations of the lattice SU(3) gauge theory, we calculate the isothermal moment of inertia of the rigidly rotating gluon plasma. We find that the moment of inertia unexpectedly takes a negative value below the"supervortical temperature"$T_s = 1.50(10) T_c$, vanishes at $T = T_s$, and becomes a positive quantity at higher temperatures. The negative moment of inertia indicates a thermodynamic instability of rigid rotation. We derive the condition of thermodynamic stability of the vortical plasma and show how it relates to the scale anomaly and the magnetic gluon condensate. The rotational instability of gluon plasma shares a striking similarity with the rotational instabilities of spinning Kerr and Myers-Perry black holes.

[1]  M. Edmonds,et al.  Quantum vacuum, rotation, and nonlinear fields , 2022, Physical Review D.

[2]  V. Braguta,et al.  Thermal phase transitions in rotating QCD with dynamical quarks , 2022, Proceedings of The 39th International Symposium on Lattice Field Theory — PoS(LATTICE2022).

[3]  V. Goy,et al.  Inhomogeneity of a rotating gluon plasma and the Tolman-Ehrenfest law in imaginary time: Lattice results for fast imaginary rotation , 2022, Physical Review D.

[4]  L. Glozman Chiral spin symmetry and hot/dense QCD , 2022, Progress in Particle and Nuclear Physics.

[5]  Y. Shimada,et al.  Perturbative Confinement in Thermal Yang-Mills Theories Induced by Imaginary Angular Velocity. , 2022, Physical review letters.

[6]  D. Babic,et al.  Negative-Inertia Converters: Devices Manifesting Negative Mass and Negative Moment of Inertia , 2022, Symmetry.

[7]  N. Sadooghi,et al.  Inverse magnetorotational catalysis and the phase diagram of a rotating hot and magnetized quark matter , 2021, Physical Review D.

[8]  E. Gourgoulhon,et al.  Heavy quarks in rotating plasma via holography , 2021, Nuclear Physics B.

[9]  V. Braguta,et al.  Influence of relativistic rotation on the confinement-deconfinement transition in gluodynamics , 2021, Physical Review D.

[10]  Y. Hidaka,et al.  Deconfining phase boundary of rapidly rotating hot and dense matter and analysis of moment of inertia , 2021, Physics Letters B.

[11]  M. Chernodub Inhomogeneous confining-deconfining phases in rotating plasmas , 2020, 2012.04924.

[12]  H. Zong,et al.  Chiral phase transition inside a rotating cylinder within the Nambu–Jona-Lasinio model , 2020, Physical Review D.

[13]  D. Hou,et al.  Gluodynamics and deconfinement phase transition under rotation from holography , 2020, Journal of High Energy Physics.

[14]  J. Liao,et al.  Vorticity and Spin Polarization in Heavy Ion Collisions: Transport Models , 2020, Strongly Interacting Matter under Rotation.

[15]  M. Teper,et al.  The glueball spectrum of SU(3) gauge theory in 3 + 1 dimensions , 2020, Journal of High Energy Physics.

[16]  V. Braguta,et al.  Study of the Confinement/Deconfinement Phase Transition in Rotating Lattice SU(3) Gluodynamics , 2020, JETP Letters.

[17]  F. Becattini,et al.  Polarization and Vorticity in the Quark–Gluon Plasma , 2020, Annual Review of Nuclear and Particle Science.

[18]  P. Gubler,et al.  Recent progress in QCD condensate evaluations and sum rules , 2018, Progress in Particle and Nuclear Physics.

[19]  Xinyang Wang,et al.  Quark matter under rotation in the NJL model with vector interaction , 2018, Physical Review D.

[20]  S. Gongyo,et al.  Effects of rotation and boundaries on chiral symmetry breaking of relativistic fermions , 2017, 1702.08266.

[21]  Nasim,et al.  Global $\Lambda$ hyperon polarization in nuclear collisions: evidence for the most vortical fluid , 2017 .

[22]  S. Gongyo,et al.  Interacting fermions in rotation: chiral symmetry restoration, moment of inertia and thermodynamics , 2016, Journal of High Energy Physics.

[23]  J. Liao,et al.  Pairing Phase Transitions of Matter under Rotation. , 2016, Physical review letters.

[24]  K. Fukushima,et al.  Analogy between rotation and density for Dirac fermions in a magnetic field , 2015, 1512.08974.

[25]  Victor E. Ambruş,et al.  Rotating fermions inside a cylindrical boundary , 2015, 1512.05239.

[26]  E. Winstanley,et al.  Rotating quantum states , 2014, 1401.6388.

[27]  R. Mann,et al.  Thermodynamics of Rotating Black Holes and Black Rings: Phase Transitions and Thermodynamic Volume , 2014, 1401.2586.

[28]  Yuji Hirono,et al.  Lattice QCD in rotating frames. , 2013, Physical review letters.

[29]  M. Chernodub Rotating Casimir systems: Magnetic-field-enhanced perpetual motion, possible realization in doped nanotubes, and laws of thermodynamics , 2012, 1207.3052.

[30]  Z. Fodor,et al.  Precision SU(3) lattice thermodynamics for a large temperature range , 2012, 1204.6184.

[31]  M. Chernodub Permanently rotating devices: extracting rotation from quantum vacuum fluctuations? , 2012, 1203.6588.

[32]  M. Perry,et al.  Thermodynamic instability of rotating black holes , 2009, 0903.3256.

[33]  E. Shuryak,et al.  The magnetic component of quark-gluon plasma is also a liquid. , 2008, Physical review letters.

[34]  H. ThalerRichard,et al.  Theoretical foundations , 2007, Interpersonal Meaning in Multimodal English Textbooks.

[35]  V. Zakharov,et al.  Magnetic component of Yang-Mills plasma. , 2006, Physical review letters.

[36]  H. Reall Classical and thermodynamic stability of black branes , 2001, hep-th/0104071.

[37]  T. Prestidge Dynamic and thermodynamic stability and negative modes in Schwarzschild-anti-de Sitter black holes , 1999, hep-th/9907163.

[38]  David E. Miller The Gluon condensate in QCD at finite temperature , 1998, hep-ph/9807304.

[39]  F. Karsch,et al.  String tension and thermodynamics with tree level and tadpole improved actions , 1997, hep-lat/9707023.

[40]  B. Petersson,et al.  Thermodynamics of SU(3) lattice gauge theory , 1996, hep-lat/9602007.

[41]  T. Hatsuda,et al.  Hadronic screening masses and the magnetic gluon condensate at high temperature , 1994 .

[42]  York,et al.  Action principle and partition function for the gravitational field in black-hole topologies. , 1988, Physical review letters.

[43]  P. Weisz,et al.  Computation of the action for on-shell improved lattice gauge theories at weak coupling , 1985 .

[44]  Giampiero Paffuti,et al.  Symanzik's improved lagrangian for lattice gauge theory , 1983 .

[45]  A. Vainshtein,et al.  QCD and Resonance Physics: Applications , 1979 .

[46]  A. Vainshtein,et al.  QCD and resonance physics. theoretical foundations , 1979 .

[47]  Frank Weinhold,et al.  Metric geometry of equilibrium thermodynamics , 1975 .

[48]  R. Tolman,et al.  Temperature equilibrium in a static gravitational field , 1930 .

[49]  R. Tolman On the Weight of Heat and Thermal Equilibrium in General Relativity , 1930 .