Computing the Follow Automaton of an Expression

Small nondeterministic recognizers are very useful in practical applications based on regular expression searching. The follow automaton, recently introduced by Ilie and Yu, is such a small recognizer, since it is a quotient of the position automaton. The aim of this paper is to present an efficient computation of this quotient, based on specific properties of the $\mathcal{ZPC}$ of the expression. The motivation is twofold. Since this structure is already a basic tool for computing the position automaton, Antimirov’s automaton and Hromkovic’s automaton, the design of an algorithm for computing the follow automaton via this structure makes it easier to compare all these small recognizers. Secondly such an algorithm provides a straightforward alternative to the rather sophisticated handling of e-transitions used in the original algorithm.

[1]  Chia-Hsiang Chang,et al.  From Regular Expressions to DFA's Using Compressed NFA's , 1992, Theor. Comput. Sci..

[2]  Jean-Marc Champarnaud,et al.  Subset construction complexity for homogeneous automata, position automata and ZPC-structures , 2001, Theor. Comput. Sci..

[3]  Djelloul Ziadi,et al.  Computing the equation automaton of a regular expression in O(s2) space and time , 2001 .

[4]  Djelloul Ziadi,et al.  Computing the Equation Automaton of a Regular Expression in Space and Time , 2001, CPM.

[5]  Djelloul Ziadi,et al.  From C-Continuations to New Quadratic Algorithms for Automaton Synthesis , 2001, Int. J. Algebra Comput..

[6]  Patrícia Duarte de Lima Machado,et al.  Unit Testing for CASL Architectural Specifications , 2002, MFCS.

[7]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[8]  Anca Muscholl,et al.  Computing epsilon-free NFA from regular expressions in O(n log2(n)) time , 2000, RAIRO Theor. Informatics Appl..

[9]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[10]  Jean-Marc Champarnaud,et al.  Evaluation of Three Implicit Structures to Implement Nondeterministic Automata From Regular Expressions , 2002, Int. J. Found. Comput. Sci..

[11]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[12]  Djelloul Ziadi,et al.  Passage d'une expression rationnelle à un automate fini non-déterministe , 1997 .

[13]  Djelloul Ziadi,et al.  A New Quadratic Algorithm to Convert a Regular Expression into an Automaton , 1996, Workshop on Implementing Automata.

[14]  Lucian Ilie,et al.  Algorithms for Computing Small NFAs , 2002, MFCS.

[15]  Anca Muscholl,et al.  Computing epsilon-Free NFA from Regular Expressions in O(n log²(n)) Time , 1998, MFCS.

[16]  Valentin M. Antimirov Partial Derivatives of Regular Expressions and Finite Automaton Constructions , 1996, Theor. Comput. Sci..

[17]  V. Glushkov THE ABSTRACT THEORY OF AUTOMATA , 1961 .

[18]  Lucian Ilie,et al.  Constructing NFA s by Optimal Use of Positions in Regular Expressions , 2002, CPM.

[19]  Thomas Wilke,et al.  Translating Regular Expressions into Small epsilon-Free Nondeterministic Finite Automata , 1997, STACS.

[20]  Anne Brüggemann-Klein Regular Expressions into Finite Automata , 1993, Theor. Comput. Sci..

[21]  Robert McNaughton,et al.  Regular Expressions and State Graphs for Automata , 1960, IRE Trans. Electron. Comput..