The structure of the brainstem and cervical spinal cord in lungless salamanders (family plethodontidae) and its relation to feeding

We present an HRP study of the sensory tracts and motor nuclei associated with feeding (especially use of the tongue) in plethodontid salamanders (mainly Batrachoseps attenuatus, Bolitoglossa subpalmata, Desmognathus ochrophaeus, Eurycea bislineata, and Plethodon jordani). The nerves studied are VII (ramus hyomandibularis only), IX, X, XI, the first spinal nerve (hypoglossus), and the second spinal nerve. Two types of sensory projections are universally found in the brainstem: superficial somatosensory projections of VII, IX, and X, and deeper visceral sensory projections of IX and X to the fasciculus solitarius. The first spinal nerve and the spinal accessory nerve (XI) have no sensory projections, but the second spinal nerve has typical projections along the dorsal funiculus of the spinal cord.

[1]  W. Cruce,et al.  Organization within the cranial IX–X complex in ranid frogs: A horseradish peroxidase transport study , 1984, The Journal of comparative neurology.

[2]  D. Wake,et al.  Tongue evolution in the lungless salamanders, family plethodontidae I. Introduction, theory and a general model of dynamics , 1976, Journal of morphology.

[3]  D. Wake,et al.  Tongue function in the salamander Bolitoglossa occident alis. , 1977, Archives of oral biology.

[4]  R. Nieuwenhuys,et al.  The cell masses in the brainstem of the South African clawed frog Xenopus laevis: A topographical and topological analysis , 1983, The Journal of comparative neurology.

[5]  G. Székely,et al.  Organization of Locomotion , 1976 .

[6]  Afferent visual projections in three species of lungless salamanders (family plethodontidae) , 1982, Neuroscience Letters.

[7]  G. Székely,et al.  The dorsomedial nuclear group of cranial nerves in the frog. , 1977, Acta biologica Academiae Scientiarum Hungaricae.

[8]  D. Wake,et al.  Tongue evolution in the lungless salamanders, family plethodontidae. II. Function and evolutionary diversity , 1977 .

[9]  Elizabeth C. Crosly,et al.  The Brain of the Tiger Salamander. , 1949 .

[10]  H. Norris The cranial nerves of Amphiuma means , 1908 .

[11]  E. Francis,et al.  The Anatomy of the Salamander , 1935, Nature.

[12]  D. Wake,et al.  Tongue evolution in lungless salamanders, family plethodontidae. III. Patterns of peripheral innervation , 1983, Journal of morphology.

[13]  H. J. Donkelaar,et al.  Dorsal root projections in the clawed toad (Xenopus laevis) as demonstrated by anterograde labeling with horseradish peroxidase , 1982, Neuroscience.

[14]  R. Nieuwenhuys,et al.  Topological analysis of the brain stem of the axolotl Ambystoma mexicanum , 1976, The Journal of comparative neurology.

[15]  W. Cruce,et al.  Afferent and efferent components of the hypoglossal nerve in the grass frog, Rana pipiens , 1983, The Journal of comparative neurology.

[16]  G. Székely,et al.  The motor column and sensory projections of the branchial cranial nerves in the frog , 1978, The Journal of comparative neurology.

[17]  D. Wake,et al.  Trends in the functional morphology and sensorimotor control of feeding behavior in salamanders: An example of the role of internal dynamics in evolution , 1985, Acta biotheoretica.

[18]  R. Nieuwenhuys,et al.  Structure of the Brain Stem , 1976 .

[19]  Distribution of accessory and hypoglossal nerves in the hindbrain and spinal cord of lungless salamanders, family Plethodontidae , 1984, Neuroscience Letters.

[20]  G. Székely The morphology of motoneurons and dorsal root fibers in the frog's spinal cord , 1976, Brain Research.