An analysis of simplex shape measures for anisotropic meshes

This paper analyses and generalises several simplex shape measures documented in the literature and currently used for mesh adaptation and mesh optimisation. It first summarises important properties of simplices and their degeneration in Euclidean space. Different simplex shape measures are then defined and validated according to a validity criterion. The shape measures are generalised to Riemannian spaces in order to extend their use to anisotropic meshes. They are then analysed and compared using complementary approaches: a visualisation method helping to show their regularity, some theoretical relations establishing their equivalence, and a discussion on the evaluation of the global quality of a mesh. Conclusions are drawn on the choice of a simplex shape measure to guide mesh optimisation.

[1]  B. Joe,et al.  Relationship between tetrahedron shape measures , 1994 .

[2]  J. M. Thomas,et al.  Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .

[3]  A. Liu,et al.  On the shape of tetrahedra from bisection , 1994 .

[4]  M. Fortin,et al.  Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part II. Structured grids , 2002 .

[5]  Barry Joe,et al.  Quality Local Refinement of Tetrahedral Meshes Based on Bisection , 1995, SIAM J. Sci. Comput..

[6]  G. Pólya Patterns of plausible inference , 1970 .

[7]  V. T. Rajan Optimality of the Delaunay triangulation in ℝd , 1994, Discret. Comput. Geom..

[8]  Patrick M. Knupp,et al.  Matrix Norms & The Condition Number: A General Framework to Improve Mesh Quality Via Node-Movement , 1999, IMR.

[9]  G. Pólya Mathematics and Plausible Reasoning , 1958 .

[10]  David Eppstein,et al.  Dihedral bounds for mesh generation in high dimensions , 1995, SODA '95.

[11]  V. Parthasarathy,et al.  A comparison of tetrahedron quality measures , 1994 .

[12]  R. K. Smith,et al.  Mesh Smoothing Using A Posteriori Error Estimates , 1997 .

[13]  D. Du,et al.  Computing in Euclidean Geometry , 1995 .

[14]  P. George,et al.  Mesh Generation: Application to Finite Elements , 2007 .

[15]  S. H. Lo,et al.  3D mesh refinement in compliance with a specified node spacing function , 1998 .

[16]  M. Fortin,et al.  Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part I: general principles , 2000 .

[17]  Dimitri J. Mavriplis,et al.  Adaptive mesh generation for viscous flows using delaunay triangulation , 1990 .

[18]  Patrick M. Knupp,et al.  Tetrahedral Element Shape Optimization via the Jacobian Determinant and Condition Number , 1999, IMR.

[19]  S. H. Lo,et al.  OPTIMIZATION OF TETRAHEDRAL MESHES BASED ON ELEMENT SHAPE MEASURES , 1997 .

[20]  Barry Joe,et al.  Quality local refinement of tetrahedral meshes based on 8-subtetrahedron subdivision , 1996, Math. Comput..

[21]  J. W. Gaddum The Sums of the Dihedral and Trihedral Angles in a Tetrahedron , 1952 .

[22]  Thierry Coupez Grandes transformations et remaillage automatique , 1991 .