Estimation of Time Varying Linear Systems

Based on kernel and wavelet estimators of the evolutionary spectrum and cross-spectrum we propose nonlinear wavelet estimators of the time varying coefficients of a linear system, whose input and output are locally stationary processes, in the sense of Dahlhaus (1997). We obtain large sample properties of these estimators, present some simulated examples and derive results on the L2-risk for the wavelet threshold estimators, assuming that the coefficients belong to some smoothness class.

[1]  G. Pólya,et al.  Aufgaben und Lehrsätze aus der Analysis: Erster Band: Reihen · Integralrechnung Funktionentheorie , 1925 .

[2]  Chris Chatfield,et al.  Introduction to Statistical Time Series. , 1976 .

[3]  D. Brillinger Time series - data analysis and theory , 1981, Classics in applied mathematics.

[4]  P. Robinson Distributed Lag Approximation to Linear Time-Invariant Systems , 1979 .

[5]  Nouna Kettaneh,et al.  Statistical Modeling by Wavelets , 1999, Technometrics.

[6]  Hong-ye Gao Choice of thresholds for wavelet shrinkage estimate of the spectrum , 1997 .

[7]  Michael H. Neumann,et al.  Nonlinear Wavelet Estimation of Time-Varying Autoregressive Processes , 1999 .

[8]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[9]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[10]  M. B. Priestley,et al.  WAVELETS AND TIME‐DEPENDENT SPECTRAL ANALYSIS , 1996 .

[11]  R. V. Sachs,et al.  Spectral Representation and Estimation for Locally Stationary Wavelet Processes , 1999 .

[12]  Guy P. Nason,et al.  Wavelet regression by cross-validation, , 1994 .

[13]  D. Brillinger Some river wavelets , 1994 .

[14]  Kai Schneider,et al.  Wavelet Smoothing of Evolutionary Spectra by Non-Linear Thresholding , 1996 .

[15]  I. Daubechies,et al.  Wavelets on the Interval and Fast Wavelet Transforms , 1993 .

[16]  Michael H. Neumann SPECTRAL DENSITY ESTIMATION VIA NONLINEAR WAVELET METHODS FOR STATIONARY NON‐GAUSSIAN TIME SERIES , 1996 .

[17]  Rainer von Sachs,et al.  Wavelet thresholding in anisotropic function classes and application to adaptive estimation of evolutionary spectra , 1997 .

[18]  P. Morettin,et al.  A wavelet analysis for time series , 1998 .

[19]  Gilbert G. Walter,et al.  Periodic Wavelets from Scratch , 1999 .

[20]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[21]  R. Dahlhaus,et al.  Asymptotic statistical inference for nonstationary processes with evolutionary spectra , 1996 .

[22]  R. Dahlhaus Fitting time series models to nonstationary processes , 1997 .

[23]  I. Johnstone,et al.  Minimax estimation via wavelet shrinkage , 1998 .

[24]  David R. Brillinger,et al.  Time Series: Data Analysis and Theory. , 1982 .