Improved history matching of channelized reservoirs using a novel deep learning-based parametrization method

[1]  A. Kazemi,et al.  Toward investigating the application of reservoir opportunity index in facilitating well placement optimization under geological uncertainty , 2022, Journal of Petroleum Science and Engineering.

[2]  Stefan-Adrian Toma,et al.  Bridging Deep Convolutional Autoencoders and Ensemble Smoothers for Improved Estimation of Channelized Reservoirs , 2022, Mathematical Geosciences.

[3]  Hai Sun,et al.  An Efficient Spatial-Temporal Convolution Recurrent Neural Network Surrogate Model for History Matching , 2021, SPE Journal.

[4]  M. H. Sefat,et al.  A robust, multi-solution framework for well placement and control optimization , 2021, Computational Geosciences.

[5]  Baehyun Min,et al.  Efficient deep-learning-based history matching for fluvial channel reservoirs , 2021, Journal of Petroleum Science and Engineering.

[6]  Syed Imtiaz,et al.  Modified Ensemble Kalman filter for reservoir parameter and state estimation in the presence of model uncertainty , 2021 .

[7]  Y. Rafiei,et al.  Scenario Reduction of Realizations Using Fast Marching Method in Robust Well Placement Optimization of Injectors , 2021, Natural Resources Research.

[8]  Hui Zhao,et al.  History Matching of Naturally Fractured Reservoirs Using a Deep Sparse Autoencoder , 2021 .

[9]  Ji Zhang,et al.  Multi-convLSTM neural network for sensor-based human activity recognition , 2020, Journal of Physics: Conference Series.

[10]  Alireza Kazemi,et al.  Kernel-based two-dimensional principal component analysis applied for parameterization in history matching , 2020 .

[11]  M. Ahmadi,et al.  Estimating reservoir permeability distribution from analysis of pressure/rate transient data: A regional approach , 2020 .

[12]  Behnam Jafarpour,et al.  Convolutional neural networks (CNN) for feature-based model calibration under uncertain geologic scenarios , 2020, Computational Geosciences.

[13]  Xiaoyu Chen,et al.  Short-term Traffic Flow Prediction Based on ConvLSTM Model , 2020, 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC).

[14]  J. D. B. Castro,et al.  Recent developments combining ensemble smoother and deep generative networks for facies history matching , 2020, Computational Geosciences.

[15]  Junqiang Wang,et al.  Time-series well performance prediction based on Long Short-Term Memory (LSTM) neural network model , 2020 .

[16]  Jiangjiang Zhang,et al.  Using Deep Learning to Improve Ensemble Smoother: Applications to Subsurface Characterization , 2020, Water Resources Research.

[17]  J. Straubhaar,et al.  Multiresolution Approach to Condition Categorical Multiple‐Point Realizations to Dynamic Data With Iterative Ensemble Smoothing , 2020, Water Resources Research.

[18]  Kyungbook Lee,et al.  Prediction of Shale-Gas Production at Duvernay Formation Using Deep-Learning Algorithm , 2019, SPE Journal.

[19]  Mohammad Sharifi,et al.  History matching and uncertainty quantification for velocity dependent relative permeability parameters in a gas condensate reservoir , 2019, Arabian Journal of Geosciences.

[20]  Marco Aurélio Cavalcanti Pacheco,et al.  History matching geological facies models based on ensemble smoother and deep generative models , 2019, Journal of Petroleum Science and Engineering.

[21]  Alaa El. Sagheer,et al.  Time series forecasting of petroleum production using deep LSTM recurrent networks , 2019, Neurocomputing.

[22]  Alexandre A. Emerick,et al.  Methods to mitigate loss of variance due to sampling errors in ensemble data assimilation with non-local model parameters , 2019, Journal of Petroleum Science and Engineering.

[23]  Marco Aurélio Cavalcanti Pacheco,et al.  Towards a Robust Parameterization for Conditioning Facies Models Using Deep Variational Autoencoders and Ensemble Smoother , 2018, Comput. Geosci..

[24]  Sanyuan Zhao,et al.  Pyramid Dilated Deeper ConvLSTM for Video Salient Object Detection , 2018, ECCV.

[25]  Marco Aurélio Cavalcanti Pacheco,et al.  History Matching Channelized Facies Models Using Ensemble Smoother With A Deep Learning Parameterization , 2018, ECMOR XVI - 16th European Conference on the Mathematics of Oil Recovery.

[26]  Yu Zhao,et al.  History matching of multi-facies channelized reservoirs using ES-MDA with common basis DCT , 2017, Computational Geosciences.

[27]  Mohammad Ahmadi,et al.  Applying an optimized proxy-based workflow for fast history matching , 2017, Arabian Journal of Geosciences.

[28]  Marco Aurélio Cavalcanti Pacheco,et al.  Integration of Ensemble Data Assimilation and Deep Learning for History Matching Facies Models , 2017 .

[29]  Bernhard Sick,et al.  Deep Learning for solar power forecasting — An approach using AutoEncoder and LSTM Neural Networks , 2016, 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[30]  Sung-Il Kim,et al.  Aquifer characterization of gas reservoirs using Ensemble Kalman filter and covariance localization , 2016 .

[31]  Zhe Gan,et al.  Variational Autoencoder for Deep Learning of Images, Labels and Captions , 2016, NIPS.

[32]  Dit-Yan Yeung,et al.  Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting , 2015, NIPS.

[33]  van den Pmj Paul Hof,et al.  The egg model – a geological ensemble for reservoir simulation , 2014 .

[34]  Louis J. Durlofsky,et al.  A New Differentiable Parameterization Based on Principal Component Analysis for the Low-Dimensional Representation of Complex Geological Models , 2014, Mathematical Geosciences.

[35]  Dean S. Oliver,et al.  History Matching Of The Norne Full Field Model Using An Iterative Ensemble Smoother , 2013 .

[36]  Albert C. Reynolds,et al.  Ensemble smoother with multiple data assimilation , 2013, Comput. Geosci..

[37]  Karl Dunbar Stephen,et al.  Optimal Parameter Updating in Assisted History Matching Using Streamlines as a Guide , 2013 .

[38]  Honggang Wang,et al.  Optimal Well Placement Under Uncertainty Using A Retrospective Optimization Framework , 2012, ANSS 2011.

[39]  A. Reynolds,et al.  History matching time-lapse seismic data using the ensemble Kalman filter with multiple data assimilations , 2012, Computational Geosciences.

[40]  Yudou Wang,et al.  Reservoir history matching and inversion using an iterative ensemble Kalman filter with covariance localization , 2011 .

[41]  Pierre Baldi,et al.  Autoencoders, Unsupervised Learning, and Deep Architectures , 2011, ICML Unsupervised and Transfer Learning.

[42]  Geir Nævdal,et al.  An Iterative Ensemble Kalman Filter , 2011, IEEE Transactions on Automatic Control.

[43]  Dennis Denney,et al.  History Matching With Learned Sparse Dictionaries , 2011 .

[44]  Laura Dovera,et al.  Multimodal ensemble Kalman filtering using Gaussian mixture models , 2011 .

[45]  Albert C. Reynolds,et al.  Iterative Ensemble Kalman Filters for Data Assimilation , 2009 .

[46]  Albert C. Reynolds,et al.  Assessing the Uncertainty in Reservoir Description and Performance Predictions With the Ensemble Kalman Filter , 2007 .

[47]  Jef Caers,et al.  Comparing the Gradual Deformation with the Probability Perturbation Method for Solving Inverse Problems , 2007 .

[48]  Roland N. Horne,et al.  Multiresolution Wavelet Analysis for Improved Reservoir Description , 2005 .

[49]  B. Nœtinger,et al.  History Matching Using a Streamline-Based Approach and Gradual Deformation , 2004 .

[50]  Benoît Nœtinger,et al.  Optimization with the Gradual Deformation Method , 2002 .

[51]  S. Hochreiter,et al.  Long Short-Term Memory , 1997, Neural Computation.

[52]  Catherine Certes,et al.  Application of the pilot point method to the identification of aquifer transmissivities , 1991 .

[53]  A. T. Watson,et al.  Automatic History Matching With Variable-Metric Methods , 1988 .

[54]  Mario Vanhoucke,et al.  Generalized Multi-Scale Stochastic Reservoir Opportunity Index for enhanced well placement optimization under uncertainty in green and brownfields , 2021, Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles.

[55]  Baoping Tang,et al.  Self-Attention ConvLSTM and Its Application in RUL Prediction of Rolling Bearings , 2021, IEEE Transactions on Instrumentation and Measurement.

[56]  Alexandre A. Emerick,et al.  Investigation on Principal Component Analysis Parameterizations for History Matching Channelized Facies Models with Ensemble-Based Data Assimilation , 2016, Mathematical Geosciences.

[57]  Mehrdad G. Shirangi History matching production data and uncertainty assessment with an efficient TSVD parameterization algorithm , 2014 .

[58]  Albert C. Reynolds,et al.  Monte Carlo simulation of permeability fields and reservoir performance predictions with SVD parameterization in RML compared with EnKF , 2011 .

[59]  Vivek K. Goyal,et al.  Compressed History Matching: Exploiting Transform-Domain Sparsity for Regularization of Nonlinear Dynamic Data Integration Problems , 2010 .

[60]  Mathieu Feraille,et al.  Uncertainty Reduction By Production Data Assimilation Combining Gradual Deformation With Adaptive Response Surface Methodology , 2009 .

[61]  L. Durlofsky,et al.  Kernel Principal Component Analysis for Efficient, Differentiable Parameterization of Multipoint Geostatistics , 2008 .

[62]  Behnam Jafarpour,et al.  Efficient Permeability Parameterization With the Discrete Cosine Transform , 2007 .

[63]  Roland N. Horne,et al.  A Multiresolution Approach to Reservoir Parameter Estimation Using Wavelet Analysis , 2000 .

[64]  L. Hu,et al.  Gradual Deformation of Continuous Geostatistical Models for History Matching , 1998 .