Large-Area 2-D Electronics: Materials, Technology, and Devices

Recent experiments since the discovery of monolayer graphite or graphene have led to an exciting revival in the interest in the electronic applications for graphene, as well as other 2-D materials such as hexagonal boron nitride (hBN) and molybdenum disulfide (MoS2). These layered materials serve as an exciting new platform for flexible and transparent electronics where surfaces can be enriched with new functionality. This paper aims to provide an overview behind these new class of materials ranging upon important issues for electronic integration including synthesis all the way to current state-of-the-art circuits and devices made from these materials.

[1]  Jun Fujii,et al.  Graphene synthesis on cubic SiC/Si wafers. perspectives for mass production of graphene-based electronic devices. , 2010, Nano letters.

[2]  Robert Kershaw,et al.  The preparation of and electrical properties of niobium selenide and tungsten selenide , 1967 .

[3]  M. Wakabayashi,et al.  Atomic Structure of Monolayer Graphite Formed on Ni(111) , 1996 .

[4]  Kourosh Kalantar-Zadeh,et al.  Atomically thin layers of MoS2 via a two step thermal evaporation-exfoliation method. , 2012, Nanoscale.

[5]  Kang L. Wang,et al.  A chemical route to graphene for device applications. , 2007, Nano letters.

[6]  T. Taniguchi,et al.  Boron nitride substrates for high mobility chemical vapor deposited graphene , 2011, 1105.4938.

[7]  T. Taniguchi,et al.  BN/Graphene/BN Transistors for RF Applications , 2011, IEEE Electron Device Letters.

[8]  Q. Fu,et al.  Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum , 2012, Nature Communications.

[9]  F. Xia,et al.  The origins and limits of metal-graphene junction resistance. , 2011, Nature nanotechnology.

[10]  U Zeitler,et al.  Room-Temperature Quantum Hall Effect in Graphene , 2007, Science.

[11]  H. Sachdev,et al.  Synthesis of One Monolayer of Hexagonal Boron Nitride on Ni(111) from B‐Trichloroborazine (ClBNH)3. , 2004 .

[12]  Wengui Weng,et al.  Preparation of polystyrene–graphite conducting nanocomposites via intercalation polymerization , 2001 .

[13]  Mikael Syväjärvi,et al.  Homogeneous large-area graphene layer growth on 6H-SiC(0001) , 2008 .

[14]  S. Nguyen,et al.  Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. , 2010, Small.

[15]  D. R. Edmondson Electronic band structure of the layer-type crystal 2HMoS2 , 1972 .

[16]  Kazuhito Tsukagoshi,et al.  Low operating bias and matched input-output characteristics in graphene logic inverters. , 2010, Nano letters.

[17]  P M Campbell,et al.  Low-Phase-Noise Graphene FETs in Ambipolar RF Applications , 2011, IEEE Electron Device Letters.

[18]  K. Jenkins,et al.  Dual-Gate Graphene FETs With $f_{T}$ of 50 GHz , 2009, IEEE Electron Device Letters.

[19]  Sokrates T. Pantelides,et al.  Molecular doping of graphene with ammonium groups , 2012 .

[20]  E. Boellaard,et al.  The formation of filamentous carbon on iron and nickel catalysts : II. Mechanism , 1985 .

[21]  Jacek Klinowski,et al.  Structure of Graphite Oxide Revisited , 1998 .

[22]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[23]  Guo-Hua Hu,et al.  A new process of fabricating electrically conducting nylon 6/graphite nanocomposites via intercalation polymerization , 2000 .

[24]  Mark S. Lundstrom,et al.  Substrate Gating of Contact Resistance in Graphene Transistors , 2011, IEEE Transactions on Electron Devices.

[25]  R. Ruoff,et al.  Chemical methods for the production of graphenes. , 2009, Nature nanotechnology.

[26]  Jing Kong,et al.  Gigahertz ambipolar frequency multiplier based on CVD graphene , 2010, 2010 International Electron Devices Meeting.

[27]  James M Tour,et al.  Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. , 2008, Journal of the American Chemical Society.

[28]  C. N. R. Rao,et al.  Covalent and Noncovalent Functionalization and Solubilization of Graphene , 2009 .

[29]  D.D.L. Chung,et al.  Exfoliation of graphite , 1987 .

[30]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[31]  E. Yoo,et al.  Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. , 2008, Nano letters.

[32]  Hiroki Hibino,et al.  Anisotropic layer-by-layer growth of graphene on vicinal SiC(0001) surfaces , 2010 .

[33]  M. Chhowalla,et al.  A review of chemical vapour deposition of graphene on copper , 2011 .

[34]  Jun Lou,et al.  Large scale growth and characterization of atomic hexagonal boron nitride layers. , 2010, Nano letters.

[35]  D. Goldhaber-Gordon,et al.  Contact resistance and shot noise in graphene transistors , 2008, 0810.4568.

[36]  Fengnian Xia,et al.  Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. , 2010, Nano letters.

[37]  S. Banerjee,et al.  Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric , 2009, 0901.2901.

[38]  Yuan Taur,et al.  Source—Drain contact resistance in CMOS with self-aligned TiSi2 , 1987, IEEE Transactions on Electron Devices.

[39]  Jing Kong,et al.  Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. , 2010, Nano letters.

[40]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[41]  W. D. de Heer,et al.  The growth and morphology of epitaxial multilayer graphene , 2008 .

[42]  J. Brink,et al.  Doping graphene with metal contacts. , 2008, Physical review letters.

[43]  Oshima,et al.  Charge-transfer mechanism for the (monolayer graphite) /Ni(111) system. , 1992, Physical review. B, Condensed matter.

[44]  Jong-Hyun Ahn,et al.  Chemical vapor deposition-grown graphene: the thinnest solid lubricant. , 2011, ACS nano.

[45]  K. Novoselov,et al.  Micrometer-scale ballistic transport in encapsulated graphene at room temperature. , 2011, Nano letters.

[46]  J. Shan,et al.  Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. , 2009, Physical review letters.

[47]  A. Karu,et al.  Pyrolytic Formation of Highly Crystalline Graphite Films , 1966 .

[48]  J. Kong,et al.  Anisotropic etching and nanoribbon formation in single-layer graphene. , 2009, Nano letters (Print).

[49]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[50]  John W. Connell,et al.  Soluble, Exfoliated Hexagonal Boron Nitride Nanosheets , 2010 .

[51]  N. Yokoyama,et al.  A polarity-controllable graphene inverter , 2010 .

[52]  Takashi Taniguchi,et al.  Doping of hexagonal boron nitride via intercalation: A theoretical prediction , 2010 .

[53]  M. Capano,et al.  Graphene formation mechanisms on 4H-SiC(0001) , 2009 .

[54]  C. N. R. Rao,et al.  Synthesis, Structure, and Properties of Boron‐ and Nitrogen‐Doped Graphene , 2009, 0902.3077.

[55]  M. Dresselhaus,et al.  Intercalation compounds of graphite , 1981 .

[56]  Hirokazu Fukidome,et al.  Surface Chemistry Involved in Epitaxy of Graphene on 3C-SiC(111)/Si(111) , 2010, Nanoscale research letters.

[57]  Gianaurelio Cuniberti,et al.  Direct low-temperature nanographene CVD synthesis over a dielectric insulator. , 2010, ACS nano.

[58]  Hirokazu Fukidome,et al.  Epitaxial Growth Processes of Graphene on Silicon Substrates , 2010 .

[59]  C. Berger,et al.  Why multilayer graphene on 4H-SiC(0001[over ]) behaves like a single sheet of graphene. , 2008, Physical review letters.

[60]  Jinyeong Lee,et al.  Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. , 2012, Nano letters.

[61]  Jeffrey Bokor,et al.  Direct chemical vapor deposition of graphene on dielectric surfaces. , 2010, Nano letters.

[62]  S. Stankovich,et al.  Preparation and characterization of graphene oxide paper , 2007, Nature.

[63]  S. Stankovich,et al.  Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide , 2007 .

[64]  Peide D. Ye,et al.  The integration of high-k dielectric on two-dimensional crystals by atomic layer deposition , 2012 .

[65]  Wenjuan Zhu,et al.  Silicon nitride gate dielectrics and band gap engineering in graphene layers. , 2010, Nano letters.

[66]  Feng Wang,et al.  Gate-Variable Optical Transitions in Graphene , 2008, Science.

[67]  Jansen,et al.  Electronic interlayer states in hexagonal boron nitride. , 1985, Physical review. B, Condensed matter.

[68]  Fengnian Xia,et al.  Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors. , 2009, Nano letters.

[69]  R. A. Bromley A semi-empirical tight-binding calculation of the band structure of MoS2 , 1970 .

[70]  H. Handa,et al.  Epitaxial graphene field effect transistors on silicon substrates , 2009, 2009 Proceedings of the European Solid State Device Research Conference.

[71]  F. Xia,et al.  High-frequency, scaled graphene transistors on diamond-like carbon , 2011, Nature.

[72]  P. Kim,et al.  Energy band-gap engineering of graphene nanoribbons. , 2007, Physical review letters.

[73]  Oshima,et al.  Anomalous bond of monolayer graphite on transition-metal carbide surfaces. , 1990, Physical review letters.

[74]  Xinran Wang,et al.  Etching and narrowing of graphene from the edges. , 2010, Nature chemistry.

[75]  Maki Suemitsu,et al.  Graphene formation on a 3C-SiC(111) thin film grown on Si(110) substrate , 2009 .

[76]  Guohua Chen,et al.  Exfoliation of graphite flake and its nanocomposites , 2003 .

[77]  J. Coleman,et al.  High-yield production of graphene by liquid-phase exfoliation of graphite. , 2008, Nature nanotechnology.

[78]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[79]  A. Morpurgo,et al.  Contact resistance in graphene-based devices , 2009, 0901.0485.

[80]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[81]  Dong Seup Lee,et al.  Delay Analysis of Graphene Field-Effect Transistors , 2011, IEEE Electron Device Letters.

[82]  D. Nezich,et al.  Graphene Frequency Multipliers , 2009, IEEE Electron Device Letters.

[83]  K. Shepard,et al.  Graphene field-effect transistors based on boron nitride gate dielectrics , 2010, 2010 International Electron Devices Meeting.

[84]  Yuyan Shao,et al.  Nitrogen-doped graphene and its application in electrochemical biosensing. , 2010, ACS nano.

[85]  Yan Li,et al.  Large signal operation of small band-gap carbon nanotube-based ambipolar transistor: a high-performance frequency doubler. , 2010, Nano letters.

[86]  C. Dimitrakopoulos,et al.  100 GHz Transistors from Wafer Scale Epitaxial Graphene , 2010, 1002.3845.

[87]  J. E. Crombeen,et al.  LEED and Auger electron observations of the SiC(0001) surface , 1975 .

[88]  Qing Hua Wang,et al.  Seeding atomic layer deposition of high-k dielectrics on epitaxial graphene with organic self-assembled monolayers. , 2011, ACS nano.

[89]  Kang L. Wang,et al.  High-speed graphene transistors with a self-aligned nanowire gate , 2010, Nature.

[90]  A. Obraztsov,et al.  Chemical vapor deposition of thin graphite films of nanometer thickness , 2007 .

[91]  Sandip Niyogi,et al.  Solution properties of graphite and graphene. , 2006, Journal of the American Chemical Society.

[92]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[93]  Harry Julius Emeléus,et al.  Advances in Inorganic Chemistry and Radiochemistry , 1982 .

[94]  C. Berger,et al.  Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide , 2011, Proceedings of the National Academy of Sciences.

[95]  Luigi Colombo,et al.  Contact resistance in few and multilayer graphene devices , 2010 .

[96]  C. Dimitrakopoulos,et al.  Wafer-Scale Graphene Integrated Circuit , 2011, Science.

[97]  Kwang S. Kim,et al.  Roll-to-roll production of 30-inch graphene films for transparent electrodes. , 2010, Nature nanotechnology.

[98]  V. Bulović,et al.  Doped graphene electrodes for organic solar cells , 2010, Nanotechnology.

[99]  Charles R. Eddy,et al.  Hall effect mobility of epitaxial graphene grown on silicon carbide , 2009, 0907.5026.

[100]  A. Reina,et al.  All graphene electromechanical switch fabricated by chemical vapor deposition , 2009 .

[101]  P. Kim,et al.  Performance of monolayer graphene nanomechanical resonators with electrical readout. , 2009, Nature nanotechnology.

[102]  J. Moon,et al.  Epitaxial Graphenes on Silicon Carbide , 2010, 1002.0873.

[103]  W. S. Hummers,et al.  Preparation of Graphitic Oxide , 1958 .

[104]  S. Kim,et al.  Noncovalent functionalization of graphene with end-functional polymers , 2010 .

[105]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[106]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.

[107]  P. Campbell,et al.  Techniques for the Dry Transfer of Epitaxial Graphene onto Arbitrary Substrates , 2009, ACS nano.

[108]  Aachen,et al.  A Graphene Field-Effect Device , 2007, IEEE Electron Device Letters.

[109]  K. Müllen,et al.  Transparent, conductive graphene electrodes for dye-sensitized solar cells. , 2008, Nano letters.

[110]  Guo Qin Xu,et al.  Decoration of activated carbon nanotubes with copper and nickel , 2000 .

[111]  Chongwu Zhou,et al.  Anisotropic hydrogen etching of chemical vapor deposited graphene. , 2012, ACS nano.

[112]  A. Toriumi,et al.  Metal/graphene contact as a performance Killer of ultra-high mobility graphene analysis of intrinsic mobility and contact resistance , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[113]  Ping Chen,et al.  Growth of carbon nanotubes by catalytic decomposition of CH4 or CO on a NiMgO catalyst , 1997 .

[114]  Mehmet Topsakal,et al.  First-principles study of two- and one-dimensional honeycomb structures of boron nitride , 2008, 0812.4454.

[115]  K. Shepard,et al.  RF performance of top-gated, zero-bandgap graphene field-effect transistors , 2008, 2008 IEEE International Electron Devices Meeting.

[116]  Han Wang,et al.  Graphene-Based Ambipolar RF Mixers , 2010, IEEE Electron Device Letters.

[117]  Branimir Radisavljevic,et al.  Integrated circuits and logic operations based on single-layer MoS2. , 2011, ACS nano.

[118]  Bei Wang,et al.  Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets , 2009 .

[119]  Takashi Taniguchi,et al.  Ultraviolet luminescence spectra of boron nitride single crystals grown under high pressure and high temperature , 2004 .

[120]  K. Nagashio,et al.  Density-of-States Limited Contact Resistance in Graphene Field-Effect Transistors , 2011 .

[121]  K. Jenkins,et al.  Operation of graphene transistors at gigahertz frequencies. , 2008, Nano letters.

[122]  J. Moon,et al.  Top-Gated Graphene Field-Effect Transistors Using Graphene on Si (111) Wafers , 2010, IEEE Electron Device Letters.

[123]  Jae-Young Choi,et al.  Layer-by-layer doping of few-layer graphene film. , 2010, ACS nano.

[124]  Roberto Car,et al.  Functionalized single graphene sheets derived from splitting graphite oxide. , 2006, The journal of physical chemistry. B.

[125]  J. Moon,et al.  Epitaxial-Graphene RF Field-Effect Transistors on Si-Face 6H-SiC Substrates , 2009, IEEE Electron Device Letters.

[126]  Philip Kim,et al.  Channel length scaling in graphene field-effect transistors studied with pulsed current-voltage measurements. , 2011, Nano letters.

[127]  S. Morrison,et al.  Single-layer MoS2 , 1986 .

[128]  Huili Grace Xing,et al.  Graphene nanoribbon FETs for digital electronics: experiment and modeling , 2013, Int. J. Circuit Theory Appl..

[129]  L. Mattheiss Band Structures of Transition-Metal-Dichalcogenide Layer Compounds. , 1973 .

[130]  Pablo Jarillo-Herrero,et al.  Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. , 2011, Nature materials.

[131]  Takashi Taniguchi,et al.  Deep Ultraviolet Light‐Emitting Hexagonal Boron Nitride Synthesized at Atmospheric Pressure. , 2007 .

[132]  Yan Wang,et al.  A Graphene Hybrid Material Covalently Functionalized with Porphyrin: Synthesis and Optical Limiting Property , 2009 .

[133]  Rui He,et al.  Visualizing Individual Nitrogen Dopants in Monolayer Graphene , 2011, Science.

[134]  Hirokazu Fukidome,et al.  Epitaxial graphene top-gate FETs on silicon substrates , 2009, 2009 International Semiconductor Device Research Symposium.

[135]  Kiyoyuki Terakura,et al.  Selective nitrogen doping in graphene: Enhanced catalytic activity for the oxygen reduction reaction , 2011 .

[136]  J. Kong,et al.  Impact of Graphene Interface Quality on Contact Resistance and RF Device Performance , 2011, IEEE Electron Device Letters.

[137]  I. Alstrup,et al.  A new model explaining carbon filament growth on nickel, iron, and NiCu alloy catalysts , 1988 .

[138]  A. Toriumi,et al.  Contact resistivity and current flow path at metal/graphene contact , 2010 .

[139]  Noureddine Abidi,et al.  Wettability and surface free energy of graphene films. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[140]  J. Tour,et al.  Layer-by-Layer Removal of Graphene for Device Patterning , 2011, Science.

[141]  J. Kong,et al.  Integrated circuits based on bilayer MoS₂ transistors. , 2012, Nano letters.

[142]  D. R. Strachan,et al.  Crystallographic etching of few-layer graphene. , 2008, Nano letters.

[143]  Chun Li,et al.  Non-covalent functionalization of graphene sheets by sulfonated polyaniline. , 2009, Chemical communications.

[144]  Michael Labella,et al.  Epitaxial graphene transistors: enhancing performance via hydrogen intercalation. , 2011, Nano letters.

[145]  Takashi Taniguchi,et al.  Synthesis of Cubic and Hexagonal Boron Nitrides by Using Ni Solvent under High Pressure , 2007 .

[146]  Xiaojun Weng,et al.  Nucleation of epitaxial graphene on SiC(0001). , 2010, ACS nano.

[147]  P. Kim,et al.  Temperature-dependent transport in suspended graphene. , 2008, Physical review letters.

[148]  H. B. Weber,et al.  Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. , 2009, Nature materials.

[149]  K. Mohanram,et al.  Triple-mode single-transistor graphene amplifier and its applications. , 2010, ACS nano.

[150]  David L. Trimm,et al.  The Formation and Removal of Coke from Nickel Catalyst , 1977 .