MiRP1 Forms IKr Potassium Channels with HERG and Is Associated with Cardiac Arrhythmia

[1]  M. Sanguinetti,et al.  Long QT Syndrome-associated Mutations in the Per-Arnt-Sim (PAS) Domain of HERG Potassium Channels Accelerate Channel Deactivation* , 1999, The Journal of Biological Chemistry.

[2]  F. Sesti,et al.  Single-Channel Characteristics of Wild-Type IKs Channels and Channels formed with Two MinK Mutants that Cause Long QT Syndrome , 1998, The Journal of general physiology.

[3]  Fred J. Sigworth,et al.  Single-Channel Properties of IKs Potassium Channels , 1998, The Journal of general physiology.

[4]  B. Knollmann,et al.  Cardiac actions of erythromycin: influence of female sex. , 1998, JAMA.

[5]  R. Quatrano Genomics , 1998, Plant Cell.

[6]  M. Keating,et al.  Genomic structure of three long QT syndrome genes: KVLQT1, HERG, and KCNE1. , 1998, Genomics.

[7]  D. Roden Taking the “Idio” out of “Idiosyncratic”: Predicting Torsades de Pointes , 1998, Pacing and clinical electrophysiology : PACE.

[8]  S. Tang,et al.  QT prolongation and Torsades de Pointes associated with clarithromycin. , 1998, The American journal of medicine.

[9]  W. Ho,et al.  Voltage‐dependent blockade of HERG channels expressed in Xenopus oocytes by external Ca2+ and Mg2+ , 1998, The Journal of physiology.

[10]  S. Goldstein,et al.  The conduction pore of a cardiac potassium channel , 1998, Nature.

[11]  Priya D. Duggal,et al.  Mutation of the gene for IsK associated with both Jervell and Lange-Nielsen and Romano-Ward forms of Long-QT syndrome. , 1998, Circulation.

[12]  C. January,et al.  Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature. , 1998, Biophysical journal.

[13]  H. Strauss,et al.  Modulation of HERG affinity for E‐4031 by [K+]o and C‐type inactivation , 1997, FEBS letters.

[14]  M. Sanguinetti,et al.  Mutations in the hminK gene cause long QT syndrome and suppress lKs function , 1997, Nature Genetics.

[15]  N. Copeland,et al.  Two isoforms of the mouse ether-a-go-go-related gene coassemble to form channels with properties similar to the rapidly activating component of the cardiac delayed rectifier K+ current. , 1997, Circulation research.

[16]  L. Wang,et al.  Electrophysiological characterization of an alternatively processed ERG K+ channel in mouse and human hearts. , 1997, Circulation research.

[17]  G. Breithardt,et al.  KCNE1 mutations cause Jervell and Lange-Nielsen syndrome , 1997, Nature Genetics.

[18]  M. Pembrey,et al.  IsK and KvLQT1: mutation in either of the two subunits of the slow component of the delayed rectifier potassium channel can cause Jervell and Lange-Nielsen syndrome. , 1997, Human molecular genetics.

[19]  B. Wollnik,et al.  Pathophysiological Mechanisms of Dominant and Recessive Kvlqt1 K + Channel Mutations Found in Inherited Cardiac Arrhythmias , 1997 .

[20]  W. Stühmer,et al.  The role of the IsK protein in the specific pharmacological properties of the IKs channel complex , 1997, British journal of pharmacology.

[21]  Glenn I. Fishman,et al.  A minK–HERG complex regulates the cardiac potassium current IKr , 1997, Nature.

[22]  H. Strauss,et al.  A quantitative analysis of the activation and inactivation kinetics of HERG expressed in Xenopus oocytes , 1997, The Journal of physiology.

[23]  L. Kaczmarek,et al.  Properties and regulation of the minK potassium channel protein. , 1997, Physiological reviews.

[24]  D M Roden,et al.  Rapid inactivation determines the rectification and [K+]o dependence of the rapid component of the delayed rectifier K+ current in cardiac cells. , 1997, Circulation research.

[25]  M. Sanguinetti,et al.  Single HERG delayed rectifier K+ channels expressed in Xenopus oocytes. , 1997, The American journal of physiology.

[26]  S. Goldstein,et al.  MinK Potassium Channels Are Heteromultimeric Complexes* , 1997, The Journal of Biological Chemistry.

[27]  C Antzelevitch,et al.  Cellular and ionic mechanisms underlying erythromycin-induced long QT intervals and torsade de pointes. , 1996, Journal of the American College of Cardiology.

[28]  S. Heinemann,et al.  Inner Ear Defects Induced by Null Mutationof the isk Gene , 1996, Neuron.

[29]  M. Sanguinetti,et al.  Coassembly of KVLQT1 and minK (IsK) proteins to form cardiac IKS potassium channel , 1996, Nature.

[30]  Voltage‐ and time‐dependent block of delayed rectifier K+ current in rabbit sino‐atrial node cells by external Ca2+ and Mg2+. , 1996, The Journal of physiology.

[31]  H. Strauss,et al.  Activation and inactivation kinetics of an E-4031-sensitive current from single ferret atrial myocytes. , 1996, Biophysical journal.

[32]  D. Snyders,et al.  High affinity open channel block by dofetilide of HERG expressed in a human cell line. , 1996, Molecular pharmacology.

[33]  M. Sanguinetti,et al.  Fast inactivation causes rectification of the IKr channel , 1996, The Journal of general physiology.

[34]  M. Sanguinetti,et al.  Spectrum of HERG K+-channel dysfunction in an inherited cardiac arrhythmia. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[35]  M. Sanguinetti,et al.  Class III antiarrhythmic drugs block HERG, a human cardiac delayed rectifier K+ channel. Open-channel block by methanesulfonanilides. , 1996, Circulation research.

[36]  S. Goldstein,et al.  MinK Residues Line a Potassium Channel Pore , 1996, Neuron.

[37]  Gary Yellen,et al.  The inward rectification mechanism of the HERG cardiac potassium channel , 1996, Nature.

[38]  D. Roden,et al.  Extracellular potassium modulation of drug block of IKr. Implications for torsade de pointes and reverse use-dependence. , 1996, Circulation.

[39]  M. Sanguinetti,et al.  Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. , 1996, Nature.

[40]  T Opthof,et al.  Delayed rectifier channels in human ventricular myocytes. , 1995, Circulation.

[41]  G. Robertson,et al.  HERG, a human inward rectifier in the voltage-gated potassium channel family. , 1995, Science.

[42]  P. Daleau,et al.  Erythromycin blocks the rapid component of the delayed rectifier potassium current and lengthens repolarization of guinea pig ventricular myocytes. , 1995, Circulation.

[43]  S. Goldstein,et al.  Subunit composition of mink potassium channels , 1995, Neuron.

[44]  M. Sanguinetti,et al.  A mechanistic link between an inherited and an acquird cardiac arrthytmia: HERG encodes the IKr potassium channel , 1995, Cell.

[45]  E. Green,et al.  A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome , 1995, Cell.

[46]  D. Roden,et al.  K+ currents and K+ channel mRNA in cultured atrial cardiac myocytes (AT-1 cells). , 1994, Circulation research.

[47]  L. Kaczmarek,et al.  The minK potassium channel exists in functional and nonfunctional forms when expressed in the plasma membrane of Xenopus oocytes , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  M. Lehmann,et al.  Female gender as a risk factor for torsades de pointes associated with cardiovascular drugs , 1993 .

[49]  E. Carmeliet Use-dependent block and use-dependent unblock of the delayed rectifier K+ current by almokalant in rabbit ventricular myocytes. , 1993, Circulation research.

[50]  M. Lehmann,et al.  Female gender as a risk factor for torsades de pointes associated with cardiovascular drugs. , 1993, JAMA.

[51]  E. Carmeliet Voltage- and time-dependent block of the delayed K+ current in cardiac myocytes by dofetilide. , 1992, The Journal of pharmacology and experimental therapeutics.

[52]  R. North,et al.  An amino acid mutation in a potassium channel that prevents inhibition by protein kinase C. , 1992, Science.

[53]  S. Nakanishi,et al.  Alteration of channel activities and gating by mutations of slow ISK potassium channel. , 1991, The Journal of biological chemistry.

[54]  Christopher Miller,et al.  Site-specific mutations in a minimal voltage-dependent K+ channel alter ion selectivity and open-channel block , 1991, Neuron.

[55]  E. Carmeliet,et al.  Delayed K+ current and external K+ in single cardiac Purkinje cells. , 1989, The American journal of physiology.

[56]  S. Nakanishi,et al.  Cloning of a membrane protein that induces a slow voltage-gated potassium current. , 1988, Science.

[57]  T. Shibasaki,et al.  Conductance and kinetics of delayed rectifier potassium channels in nodal cells of the rabbit heart. , 1987, The Journal of physiology.

[58]  D. Roden,et al.  Incidence and clinical features of the quinidine-associated long QT syndrome: implications for patient care. , 1986, American heart journal.