Anisotropic geodesics for live‐wire mesh segmentation

We present an interactive method for mesh segmentation that is inspired by the classical live‐wire interaction for image segmentation. The core contribution of the work is the definition and computation of wires on surfaces that are likely to lie at segment boundaries. We define wires as geodesics in a new tensor‐based anisotropic metric, which improves upon previous metrics in stability and feature‐awareness. We further introduce a simple but effective mesh embedding approach that allows geodesic paths in an anisotropic path to be computed efficiently using existing algorithms designed for Euclidean geodesics. Our tool is particularly suited for delineating segmentation boundaries that are aligned with features or curvature directions, and we demonstrate its use in creating artist‐guided segmentations.

[1]  Stuart Andrews Interactive generation of feature contours on surfaces: A minimal paths approach , 2000 .

[2]  Thomas Funkhouser,et al.  A benchmark for 3D mesh segmentation , 2009, SIGGRAPH 2009.

[3]  Thomas A. Funkhouser,et al.  A benchmark for 3D mesh segmentation , 2009, ACM Trans. Graph..

[4]  Daniele Panozzo,et al.  Simple quad domains for field aligned mesh parametrization , 2011, ACM Trans. Graph..

[5]  Donald D. Hoffman,et al.  Parts of recognition , 1984, Cognition.

[6]  Michael I. Miller,et al.  Dynamic Programming Generation of Curves on Brain Surfaces , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Pierre Alliez,et al.  Variational shape approximation , 2004, ACM Trans. Graph..

[8]  Yiying Tong,et al.  Discrete 2‐Tensor Fields on Triangulations , 2014, Comput. Graph. Forum.

[9]  S. Gortler,et al.  Fast exact and approximate geodesics on meshes , 2005, SIGGRAPH 2005.

[10]  Alexander Vladimirsky,et al.  Ordered Upwind Methods for Static Hamilton-Jacobi Equations: Theory and Algorithms , 2003, SIAM J. Numer. Anal..

[11]  Mathieu Desbrun,et al.  Exoskeleton: Curve network abstraction for 3D shapes , 2011, Comput. Graph..

[12]  William A. Barrett,et al.  Intelligent scissors for image composition , 1995, SIGGRAPH.

[13]  Adam Finkelstein,et al.  Where do people draw lines? , 2008, ACM Trans. Graph..

[14]  Kenshi Takayama,et al.  Sketch-based generation and editing of quad meshes , 2013, ACM Trans. Graph..

[15]  Hans-Peter Seidel,et al.  Fast and robust detection of crest lines on meshes , 2005, SPM '05.

[16]  S. Rusinkiewicz Estimating curvatures and their derivatives on triangle meshes , 2004 .

[17]  Hans-Christian Hege,et al.  Fast and intuitive generation of geometric shape transitions , 2000, The Visual Computer.

[18]  Sung Yong Shin,et al.  A Triangulation-Invariant Method for Anisotropic Geodesic Map Computation on Surface Meshes , 2012, IEEE Transactions on Visualization and Computer Graphics.

[19]  Marcel Campen,et al.  Practical Anisotropic Geodesy , 2013, SGP '13.

[20]  Ariel Shamir,et al.  A survey on Mesh Segmentation Techniques , 2008, Comput. Graph. Forum.

[21]  Jörg-Rüdiger Sack,et al.  Shortest Anisotropic Paths on Terrains , 1999, ICALP.

[22]  David Bommes,et al.  Dual loops meshing , 2012, ACM Trans. Graph..

[23]  Helmut Pottmann,et al.  The Isophotic Metric and Its Application to Feature Sensitive Morphology on Surfaces , 2004, ECCV.

[24]  Szymon Rusinkiewicz,et al.  Estimating curvatures and their derivatives on triangle meshes , 2004, Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004..

[25]  Jiing-Yih Lai,et al.  Extraction of geodesic and feature lines on triangular meshes , 2009 .

[26]  Keenan Crane,et al.  Geodesics in heat: A new approach to computing distance based on heat flow , 2012, TOGS.

[27]  Denis Zorin,et al.  Anisotropic quadrangulation , 2010, SPM '10.

[28]  Steven J. Gortler,et al.  Fast exact and approximate geodesics on meshes , 2005, ACM Trans. Graph..

[29]  Yunjin Lee,et al.  Geometric Snakes for Triangular Meshes , 2002, Comput. Graph. Forum.

[30]  Shengfa Wang,et al.  Multi-scale anisotropic heat diffusion based on normal-driven shape representation , 2011, The Visual Computer.

[31]  Alla Sheffer,et al.  Design-driven quadrangulation of closed 3D curves , 2012, ACM Trans. Graph..

[32]  Hans-Peter Seidel,et al.  Mesh scissoring with minima rule and part salience , 2005, Comput. Aided Geom. Des..

[33]  Ioannis Pratikakis,et al.  3D Mesh Segmentation Methodologies for CAD applications , 2007 .

[34]  Jörg-Rüdiger Sack,et al.  Approximating weighted shortest paths on polyhedral surfaces , 1997, SCG '97.

[35]  Szymon Rusinkiewicz,et al.  Modeling by example , 2004, ACM Trans. Graph..

[36]  Shuai Li,et al.  Anisotropic Elliptic PDEs for Feature Classification , 2013, IEEE Transactions on Visualization and Computer Graphics.

[37]  Adam Finkelstein,et al.  Where do people draw lines , 2008, SIGGRAPH 2008.

[38]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Y. Wang,et al.  Author ' s , 2010 .

[40]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[41]  Ying He,et al.  Saddle vertex graph (SVG) , 2013, ACM Trans. Graph..