A Posteriori Analysis of Fully Discrete Method of Lines Discontinuous Galerkin Schemes for Systems of Conservation Laws
暂无分享,去创建一个
[1] Chi-Wang Shu,et al. Error Estimates to Smooth Solutions of Runge-Kutta Discontinuous Galerkin Method for Symmetrizable Systems of Conservation Laws , 2006, SIAM J. Numer. Anal..
[2] Christian Rohde,et al. Finite‐volume schemes for Friedrichs systems in multiple space dimensions: A priori and a posteriori error estimates , 2005 .
[3] Christian Rohde,et al. Error Estimates for Finite Volume Approximations of Classical Solutions for Nonlinear Systems of Hyperbolic Balance Laws , 2006, SIAM J. Numer. Anal..
[4] Gabriella Puppo,et al. Numerical entropy and adaptivity for finite volume schemes , 2011 .
[5] Ricardo H. Nochetto,et al. A posteriori error analysis for higher order dissipative methods for evolution problems , 2006, Numerische Mathematik.
[6] B. Fornberg. Generation of finite difference formulas on arbitrarily spaced grids , 1988 .
[7] Elisabetta Chiodaroli,et al. A counterexample to well-posedness of entropy solutions to the compressible Euler system , 2012, 1201.3470.
[8] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[9] Arnold Lapidus. A Detached Shock Calculation by Second Order Finite Differences , 2018 .
[10] Laurent Gosse,et al. Two A Posteriori Error Estimates for One-Dimensional Scalar Conservation Laws , 2000, SIAM J. Numer. Anal..
[11] Daniela Rus,et al. Algorithms, analysis of , 2003 .
[12] Camillo De Lellis,et al. On Admissibility Criteria for Weak Solutions of the Euler Equations , 2007, 0712.3288.
[13] Chi-Wang Shu,et al. A numerical study for the performance of the Runge-Kutta discontinuous Galerkin method based on different numerical fluxes , 2006, J. Comput. Phys..
[14] J. Stoer,et al. Introduction to Numerical Analysis , 2002 .
[15] Leon Bieber,et al. Numerical Schemes For Conservation Laws , 2016 .
[16] P. Raviart,et al. Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.
[17] Wayne H. Enright,et al. Interpolants for Runge-Kutta formulas , 1986, TOMS.
[18] Eberhard Bänsch,et al. A Posteriori Error Control for Fully Discrete Crank-Nicolson Schemes , 2012, SIAM J. Numer. Anal..
[19] Desmond J. Higham,et al. Runge-Kutta Defect Control Using Hermite-Birkhoff Interpolation , 1991, SIAM J. Sci. Comput..
[20] Jon Reisner,et al. A space-time smooth artificial viscosity method for nonlinear conservation laws , 2012, J. Comput. Phys..
[21] Charalambos Makridakis,et al. Stability and Convergence of a Class of Finite Element Schemes for Hyperbolic Systems of Conservation Laws , 2004, SIAM J. Numer. Anal..
[22] Marc Laforest,et al. An adaptive version of Glimm's scheme , 2010 .
[23] Eleuterio F. Toro,et al. Centred TVD schemes for hyperbolic conservation laws , 2000 .
[24] Mario Ohlberger,et al. A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions , 2000, Math. Comput..
[25] C. Dafermos. The second law of thermodynamics and stability , 1979 .
[26] Charalambos Makridakis,et al. Space and time reconstructions in a posteriori analysis of evolution problems , 2007 .
[27] M. LAFOREST,et al. A Posteriori Error Estimate for Front-Tracking: Systems of Conservation Laws , 2004, SIAM J. Math. Anal..
[28] C. Dafermos. Hyberbolic Conservation Laws in Continuum Physics , 2000 .
[29] R. J. Diperna. Uniqueness of Solutions to Hyperbolic Conservation Laws. , 1978 .
[30] Ralf Hartmann,et al. Adaptive Discontinuous Galerkin Finite Element Methods for Nonlinear Hyperbolic Conservation Laws , 2002, SIAM J. Sci. Comput..
[31] R. Eymard,et al. Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes , 1998 .
[32] A. Ern,et al. Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .
[33] Charalambos Makridakis,et al. A Posteriori Analysis of Discontinuous Galerkin Schemes for Systems of Hyperbolic Conservation Laws , 2014, SIAM J. Numer. Anal..
[34] Marc Laforest,et al. An A Posteriori Error Estimate for Glimm’s Scheme , 2008 .
[35] Andreas Dedner,et al. Error Control for a Class of Runge-Kutta Discontinuous Galerkin Methods for Nonlinear Conservation Laws , 2007, SIAM J. Numer. Anal..