Computing Beltrami Fields
暂无分享,去创建一个
[1] O. Glass. Existence of solutions for the two-dimensional stationary Euler system for ideal fluids with arbitrary force , 2003 .
[2] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[3] I. Babuska. The finite element method with Lagrangian multipliers , 1973 .
[4] B. Low,et al. Magnetic field configurations associated with polarity intrusion in a solar active region , 1988 .
[5] D. A. Dunnett. Classical Electrodynamics , 2020, Nature.
[6] Oscar P. Bruno,et al. Existence of three‐dimensional toroidal MHD equilibria with nonconstant pressure , 1996 .
[7] L. Woltjer,et al. A THEOREM ON FORCE-FREE MAGNETIC FIELDS. , 1958, Proceedings of the National Academy of Sciences of the United States of America.
[8] Jean E. Roberts,et al. Mixed and hybrid methods , 1991 .
[9] F. Thomasset. Finite element methods for Navier-Stokes equations , 1980 .
[10] A. Bondeson,et al. The CHEASE code for toroidal MHD equilibria , 1996 .
[11] M. Berger,et al. The topological properties of magnetic helicity , 1984, Journal of Fluid Mechanics.
[12] New decomposition of shape functions spaces of mixed finite element methods , 1996 .
[13] T. Amari,et al. Approximation of linear force-free fields in bounded 3-D domains , 2000 .
[14] Giancarlo Sangalli,et al. LINK-CUTTING BUBBLES FOR THE STABILIZATION OF CONVECTION-DIFFUSION-REACTION PROBLEMS , 2003 .
[15] Michel Fortin,et al. A minimal stabilisation procedure for mixed finite element methods , 2000, Numerische Mathematik.
[16] Claes Johnson,et al. Finite element methods for linear hyperbolic problems , 1984 .
[17] Eugene N. Parker,et al. Cosmical Magnetic Fields: Their Origin and their Activity , 2019 .
[18] H. Alber. Existence of threedimensional, steady, inviscid, incompressible flows with nonvanishing vorticity , 1992 .
[19] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .
[20] Zoran Mikic,et al. RECONSTRUCTING THE SOLAR CORONAL MAGNETIC FIELD AS A FORCE-FREE MAGNETIC FIELD , 1997 .
[21] Pascal Azerad. Analyse des équations de Navier-Stokes en bassin peu profond et de l'équation de transport , 1996 .
[22] Marco Avellaneda,et al. On Woltjer’s variational principle for force‐free fields , 1991 .
[23] C. Bardos. Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation; application à l'équation de transport , 1970 .
[24] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[25] A. Chorin. A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .
[26] Gene H. Golub,et al. On Solving Block-Structured Indefinite Linear Systems , 2003, SIAM J. Sci. Comput..
[27] R. Kress. The treatment of a Neumann boundary value problem for force-free fields by an integral equation method , 1978, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[28] Uriel Frisch,et al. Chaotic streamlines in the ABC flows , 1986, Journal of Fluid Mechanics.
[29] J B Taylor,et al. Relaxation and magnetic reconnection in plasmas , 1986 .
[30] T. Hughes,et al. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .
[31] Gene H. Golub,et al. An Algebraic Analysis of a Block Diagonal Preconditioner for Saddle Point Systems , 2005, SIAM J. Matrix Anal. Appl..
[32] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[33] Stephen Childress,et al. New Solutions of the Kinematic Dynamo Problem , 1970 .
[34] G. Tallini,et al. ON THE EXISTENCE OF , 1996 .
[35] V. Arnold,et al. Sur la topologie des écoulements stationnaires des fluides parfaits , 1965 .