Computing Beltrami Fields

For solving the nonlinear equations governing force-free fields, an iterative methodology based on the splitting of the problem is described. On the basis of this splitting, three families of subproblems have to be solved numerically. The first problem consists to find a potential field. A mixed hybrid method is used to solve it. The second problem, which is a curl-div system, is solved by means of a mixed method. The last problem is a transport equation which is approximated using a streamline diffusion technique. Numerical three-dimensional experiments and results are given to illustrate the efficiency of the method.

[1]  O. Glass Existence of solutions for the two-dimensional stationary Euler system for ideal fluids with arbitrary force , 2003 .

[2]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[3]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[4]  B. Low,et al.  Magnetic field configurations associated with polarity intrusion in a solar active region , 1988 .

[5]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[6]  Oscar P. Bruno,et al.  Existence of three‐dimensional toroidal MHD equilibria with nonconstant pressure , 1996 .

[7]  L. Woltjer,et al.  A THEOREM ON FORCE-FREE MAGNETIC FIELDS. , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Jean E. Roberts,et al.  Mixed and hybrid methods , 1991 .

[9]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[10]  A. Bondeson,et al.  The CHEASE code for toroidal MHD equilibria , 1996 .

[11]  M. Berger,et al.  The topological properties of magnetic helicity , 1984, Journal of Fluid Mechanics.

[12]  New decomposition of shape functions spaces of mixed finite element methods , 1996 .

[13]  T. Amari,et al.  Approximation of linear force-free fields in bounded 3-D domains , 2000 .

[14]  Giancarlo Sangalli,et al.  LINK-CUTTING BUBBLES FOR THE STABILIZATION OF CONVECTION-DIFFUSION-REACTION PROBLEMS , 2003 .

[15]  Michel Fortin,et al.  A minimal stabilisation procedure for mixed finite element methods , 2000, Numerische Mathematik.

[16]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .

[17]  Eugene N. Parker,et al.  Cosmical Magnetic Fields: Their Origin and their Activity , 2019 .

[18]  H. Alber Existence of threedimensional, steady, inviscid, incompressible flows with nonvanishing vorticity , 1992 .

[19]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[20]  Zoran Mikic,et al.  RECONSTRUCTING THE SOLAR CORONAL MAGNETIC FIELD AS A FORCE-FREE MAGNETIC FIELD , 1997 .

[21]  Pascal Azerad Analyse des équations de Navier-Stokes en bassin peu profond et de l'équation de transport , 1996 .

[22]  Marco Avellaneda,et al.  On Woltjer’s variational principle for force‐free fields , 1991 .

[23]  C. Bardos Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation; application à l'équation de transport , 1970 .

[24]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[25]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[26]  Gene H. Golub,et al.  On Solving Block-Structured Indefinite Linear Systems , 2003, SIAM J. Sci. Comput..

[27]  R. Kress The treatment of a Neumann boundary value problem for force-free fields by an integral equation method , 1978, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[28]  Uriel Frisch,et al.  Chaotic streamlines in the ABC flows , 1986, Journal of Fluid Mechanics.

[29]  J B Taylor,et al.  Relaxation and magnetic reconnection in plasmas , 1986 .

[30]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[31]  Gene H. Golub,et al.  An Algebraic Analysis of a Block Diagonal Preconditioner for Saddle Point Systems , 2005, SIAM J. Matrix Anal. Appl..

[32]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[33]  Stephen Childress,et al.  New Solutions of the Kinematic Dynamo Problem , 1970 .

[34]  G. Tallini,et al.  ON THE EXISTENCE OF , 1996 .

[35]  V. Arnold,et al.  Sur la topologie des écoulements stationnaires des fluides parfaits , 1965 .