Dynamic matrix factorization with social influence

Matrix factorization is a key component of collaborative filtering-based recommendation systems because it allows us to complete sparse user-by-item ratings matrices under a low-rank assumption that encodes the belief that similar users give similar ratings and that similar items garner similar ratings. This paradigm has had immeasurable practical success, but it is not the complete story for understanding and inferring the preferences of people. First, peoples' preferences and their observable manifestations as ratings evolve over time along general patterns of trajectories. Second, an individual person's preferences evolve over time through influence of their social connections. In this paper, we develop a unified process model for both types of dynamics within a state space approach, together with an efficient optimization scheme for estimation within that model. The model combines elements from recent developments in dynamic matrix factorization, opinion dynamics and social learning, and trust-based recommendation. The estimation builds upon recent advances in numerical nonlinear optimization. Empirical results on a large-scale data set from the Epinions website demonstrate consistent reduction in root mean squared error by consideration of the two types of dynamics.

[1]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[2]  Jiming Liu,et al.  Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence Social Collaborative Filtering by Trust , 2022 .

[3]  Ee-Peng Lim,et al.  Modeling Temporal Adoptions Using Dynamic Matrix Factorization , 2013, 2013 IEEE 13th International Conference on Data Mining.

[4]  Wanjiun Liao,et al.  Temporal Matrix Factorization for Tracking Concept Drift in Individual User Preferences , 2018, IEEE Transactions on Computational Social Systems.

[5]  Kush R. Varshney,et al.  Dynamic matrix factorization: A state space approach , 2011, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[6]  Kush R. Varshney,et al.  A Robust Nonlinear Kalman Smoothing Approach for Dynamic Matrix Factorization , 2015 .

[7]  Anna Scaglione,et al.  The social system identification problem , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[8]  Asuman E. Ozdaglar,et al.  Opinion Dynamics and Learning in Social Networks , 2010, Dyn. Games Appl..

[9]  Christopher Ré,et al.  Parallel stochastic gradient algorithms for large-scale matrix completion , 2013, Mathematical Programming Computation.

[10]  Kush R. Varshney,et al.  Collaborative Kalman Filtering for Dynamic Matrix Factorization , 2014, IEEE Transactions on Signal Processing.

[11]  Neil Yorke-Smith,et al.  TrustSVD: Collaborative Filtering with Both the Explicit and Implicit Influence of User Trust and of Item Ratings , 2015, AAAI.

[12]  Aleksandr Y. Aravkin,et al.  Sparse/robust estimation and Kalman smoothing with nonsmooth log-concave densities: modeling, computation, and theory , 2013, J. Mach. Learn. Res..

[13]  Fei Wang,et al.  Modeling Users' Adoption Behaviors with Social Selection and Influence , 2015, SDM.

[14]  J. Burke,et al.  Optimization viewpoint on Kalman smoothing, with applications to robust and sparse estimation , 2013, 1303.1993.

[15]  Nathan Srebro,et al.  Fast maximum margin matrix factorization for collaborative prediction , 2005, ICML.

[16]  Huan Liu,et al.  Trust Evolution: Modeling and Its Applications , 2015, IEEE Transactions on Knowledge and Data Engineering.

[17]  Ruslan Salakhutdinov,et al.  Practical Large-Scale Optimization for Max-norm Regularization , 2010, NIPS.

[18]  Feiping Nie,et al.  Social trust prediction using heterogeneous networks , 2013, TKDD.

[19]  Liang-Tien Chia,et al.  Laplacian Sparse Coding, Hypergraph Laplacian Sparse Coding, and Applications , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Jie Zhang,et al.  Leveraging Decomposed Trust in Probabilistic Matrix Factorization for Effective Recommendation , 2014, AAAI.

[21]  Sanjeev R. Kulkarni,et al.  Wisdom of the Crowd: Incorporating Social Influence in Recommendation Models , 2011, 2011 IEEE 17th International Conference on Parallel and Distributed Systems.