Asymmetric Copulas and Their Application in Design of Experiments

We present an overview on definitions and properties of asymmetric copulas, i.e. copulas whose values are not invariant under any permutation of their arguments. In particular, we review an axiomatic approach in the definition of a measure of asymmetry (non–exchangeability) for copulas, starting with the seminal contributions by Klement and Mesiar [45] and Nelsen [56]. Then we discuss how asymmetric copulas may be useful also in the optimal design of experiments and how they may provide additional insights into these problems.

[1]  Alexander J. McNeil,et al.  From Archimedean to Liouville copulas , 2010, J. Multivar. Anal..

[2]  Claudia Czado,et al.  Pair-Copula Constructions of Multivariate Copulas , 2010 .

[3]  Christian Genest,et al.  Tests of symmetry for bivariate copulas , 2011, Annals of the Institute of Statistical Mathematics.

[4]  Fabrizio Durante,et al.  Shuffles of copulas , 2009 .

[5]  F. Durante Construction of non-exchangeable bivariate distribution functions , 2009 .

[6]  Jun Yan,et al.  A Non‐parametric Test of Exchangeability for Extreme‐Value and Left‐Tail Decreasing Bivariate Copulas , 2012 .

[7]  Fabrizio Durante,et al.  Multivariate patchwork copulas: A unified approach with applications to partial comonotonicity , 2013 .

[8]  Eckhard Liebscher Erratum to "Construction of asymmetric multivariate copulas" [J. Multivariate Anal. 99(2008) 2234-2250] , 2011, J. Multivar. Anal..

[9]  Christian Genest,et al.  Assessing and Modeling Asymmetry in Bivariate Continuous Data , 2013 .

[10]  Radko Mesiar,et al.  How non-symmetric can a copula be? , 2006 .

[11]  James M. McGree,et al.  Design of experiments for bivariate binary responses modelled by Copula functions , 2011, Comput. Stat. Data Anal..

[12]  Werner G. Muller,et al.  Optimal designs for copula models , 2014, Statistics.

[13]  V. Fedorov,et al.  Adaptive designs for dose-finding based on efficacy–toxicity response , 2006 .

[14]  Juan Fernández-Sánchez,et al.  Baire category results for exchangeable copulas , 2016, Fuzzy Sets Syst..

[15]  Some results on shuffles of two-dimensional copulas , 2013 .

[16]  Christian Genest,et al.  Multivariate Archimax copulas , 2014, J. Multivar. Anal..

[17]  Radko Mesiar,et al.  On copulas, quasicopulas and fuzzy logic , 2008, Soft Comput..

[18]  R. Mesiar,et al.  Invariant dependence structures and Archimedean copulas , 2011 .

[19]  C. Genest,et al.  Bivariate Distributions with Given Extreme Value Attractor , 2000 .

[20]  Hao Wang,et al.  A spatial contagion measure for financial time series , 2014, Expert Syst. Appl..

[21]  Stéphane Girard,et al.  A flexible and tractable class of one-factor copulas , 2016, Stat. Comput..

[22]  János C. Fodor,et al.  Nonstandard conjunctions and implications in fuzzy logic , 1995, Int. J. Approx. Reason..

[23]  Jean‐François Quessy,et al.  Graphical and formal statistical tools for the symmetry of bivariate copulas , 2013 .

[24]  Radko Mesiar,et al.  Non-exchangeable random variables, Archimax copulas and their fitting to real data , 2011, Kybernetika.

[25]  A. Rényi On measures of dependence , 1959 .

[26]  V. V. Fedorov,et al.  The Design of Experiments in the Multiresponse Case , 1971 .

[27]  Brendan K. Beare,et al.  TIME IRREVERSIBLE COPULA-BASED MARKOV MODELS , 2014, Econometric Theory.

[28]  C. Genest,et al.  Inference in multivariate Archimedean copula models , 2011 .

[29]  Fabrizio Durante,et al.  Spatial contagion between financial markets: a copula-based approach , 2010 .

[30]  Radko Mesiar,et al.  Asymmetric semilinear copulas , 2007, Kybernetika.

[31]  Fabrizio Durante,et al.  Componentwise Concave Copulas and Their Asymmetry , 2009, Kybernetika.

[32]  E. Klement,et al.  Measures of non-exchangeability for bivariate random vectors , 2010 .

[33]  Fabrizio Durante,et al.  Remarks on Two Product-like Constructions for Copulas , 2007, Kybernetika.

[34]  Juan Fernández-Sánchez,et al.  On the Classes of copulas and Quasi-copulas with a Given Diagonal Section , 2011, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[35]  Shaomin Wu,et al.  Construction of Asymmetric Copulas and Its Application in Two-Dimensional Reliability Modelling , 2014, Eur. J. Oper. Res..

[36]  R. H. Myers,et al.  Optimal Designs for Bivariate Logistic Regression , 1996 .

[37]  Alexander J. McNeil,et al.  Multivariate Archimedean copulas, $d$-monotone functions and $\ell_1$-norm symmetric distributions , 2009, 0908.3750.

[38]  Radko Mesiar,et al.  Archimax copulas and invariance under transformations , 2005 .

[39]  H. Wynn The Sequential Generation of $D$-Optimum Experimental Designs , 1970 .

[40]  Pavel Krupskii,et al.  Factor copula models for multivariate data , 2013, J. Multivar. Anal..

[41]  Piotr Jaworski,et al.  On spatial contagion and multivariate GARCH models , 2014 .

[42]  Michael Harder,et al.  Maximal non-exchangeability in dimension d , 2013, J. Multivar. Anal..

[43]  Fabrizio Durante,et al.  Rectangular Patchwork for Bivariate Copulas and Tail Dependence , 2009 .

[44]  R. Mesiar,et al.  Conjunctors and their Residual Implicators: Characterizations and Construction Methods , 2007 .

[45]  Karl Friedrich Siburg,et al.  Symmetry of functions and exchangeability of random variables , 2011 .

[46]  Eckhard Liebscher,et al.  Construction of asymmetric multivariate copulas , 2008 .

[47]  H. Joe Dependence Modeling with Copulas , 2014 .

[48]  Fabrizio Durante,et al.  New constructions of diagonal patchwork copulas , 2009, Inf. Sci..

[49]  Roger B. Nelsen,et al.  Extremes of nonexchangeability , 2007 .

[50]  J. Kiefer,et al.  The Equivalence of Two Extremum Problems , 1960, Canadian Journal of Mathematics.

[51]  Christian Genest,et al.  A goodness-of-fit test for bivariate extreme-value copulas , 2011, 1102.2078.

[52]  F. Durante,et al.  Non-exchangeability of negatively dependent random variables , 2010 .

[53]  R. Nelsen An Introduction to Copulas (Springer Series in Statistics) , 2006 .

[54]  Christian Genest,et al.  “Understanding Relationships Using Copulas,” by Edward Frees and Emiliano Valdez, January 1998 , 1998 .

[55]  Petr Cintula,et al.  Graded dominance and related graded properties of fuzzy connectives , 2015, Fuzzy Sets Syst..

[56]  Christian Genest,et al.  Copules archimédiennes et families de lois bidimensionnelles dont les marges sont données , 1986 .

[57]  Fabrizio Durante,et al.  Invariant dependence structure under univariate truncation , 2012 .

[58]  Radko Mesiar,et al.  Copulas with Given Diagonal Sections: Novel Constructions and Applications , 2007, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[59]  B. Schweizer,et al.  On Nonparametric Measures of Dependence for Random Variables , 1981 .

[60]  Masaaki Miyakoshi,et al.  Composite Fuzzy Relational Equations with Non-Commutative Conjunctions , 1998, Inf. Sci..

[61]  Manuel Úbeda-Flores,et al.  Best-possible bounds on the set of copulas with given degree of non-exchangeability , 2014 .

[62]  C. Sempi,et al.  Principles of Copula Theory , 2015 .

[63]  José Juan Quesada-Molina,et al.  On the construction of copulas and quasi-copulas with given diagonal sections , 2008 .