A matrix LSQR algorithm for solving constrained linear operator equations

In this work, an iterative method based on a matrix form of LSQR algorithm is constructed for solving the linear opera- tor equation A( X) = B and the minimum Frobenius norm residual problem jjA( X) BjjF where X 2 S := fX 2 R nn j X = G( X) g, F is the linear operator from R nn onto R rs , G is a linear self- conjugate involution operator and B 2 R rs . Numerical examples

[1]  Feng Yin,et al.  An iterative method for the skew-symmetric solution and the optimal approximate solution of the matrix equation AXB=C , 2008 .

[2]  Feng Ding,et al.  Gradient based iterative solutions for general linear matrix equations , 2009, Comput. Math. Appl..

[3]  Feng Ding,et al.  Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle , 2008, Appl. Math. Comput..

[4]  Yanjun Liu,et al.  Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model , 2009, Appl. Math. Comput..

[5]  Gene H. Golub,et al.  Calculating the singular values and pseudo-inverse of a matrix , 2007, Milestones in Matrix Computation.

[6]  Chuanqing Gu,et al.  A shift-splitting hierarchical identification method for solving Lyapunov matrix equations , 2009 .

[7]  Feng Ding,et al.  Gradient Based Iterative Algorithms for Solving a Class of Matrix Equations , 2005, IEEE Trans. Autom. Control..

[8]  I. Postlethwaite,et al.  Truncated balanced realization of a stable non-minimal state-space system , 1987 .

[9]  G. Duan,et al.  An explicit solution to the matrix equation AX − XF = BY , 2005 .

[10]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[11]  J. Woude,et al.  A system of real quaternion matrix equations with applications , 2009 .

[12]  Guang-Ren Duan,et al.  Gradient based iterative algorithm for solving coupled matrix equations , 2009, Syst. Control. Lett..

[13]  Masoud Hajarian,et al.  A lower bound for the product of eigenvalues of solutions to matrix equations , 2009, Appl. Math. Lett..

[14]  Feng Ding,et al.  Iterative solutions to matrix equations of the form AiXBi=Fi , 2010, Comput. Math. Appl..

[15]  James Lam,et al.  Toward solution of matrix equation X = Af (X)B + C , 2011, 1211.0346.

[16]  Qing-Wen Wang,et al.  Bisymmetric and centrosymmetric solutions to systems of real quaternion matrix equations , 2005 .

[17]  Feng Ding,et al.  Iterative least-squares solutions of coupled Sylvester matrix equations , 2005, Syst. Control. Lett..

[18]  Mehdi Dehghan,et al.  On the generalized bisymmetric and skew-symmetric solutions of the system of generalized Sylvester matrix equations , 2011 .

[19]  Mehdi Dehghan,et al.  Solving the generalized sylvester matrix equation Σi=1p AiXBi + Σj=1qCjYDj=E over reflexive and anti-reflexive matrices , 2011 .

[20]  Hsin-Chu Chen Generalized Reflexive Matrices: Special Properties and Applications , 1998, SIAM J. Matrix Anal. Appl..

[21]  Yanjun Liu,et al.  Gradient based and least squares based iterative algorithms for matrix equations AXB + CXTD = F , 2010, Appl. Math. Comput..

[22]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[23]  B. Francis,et al.  A Course in H Control Theory , 1987 .

[24]  James Lam,et al.  On Smith-type iterative algorithms for the Stein matrix equation , 2009, Appl. Math. Lett..

[25]  M. Dehghan,et al.  Analysis of an iterative algorithm to solve the generalized coupled Sylvester matrix equations , 2011 .

[26]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[27]  Qing-Wen Wang,et al.  Ranks and the least-norm of the general solution to a system of quaternion matrix equations , 2009 .

[28]  Daizhan Cheng,et al.  The polynomial solution to the Sylvester matrix equation , 2006, Appl. Math. Lett..

[29]  C. Paige Bidiagonalization of Matrices and Solution of Linear Equations , 1974 .

[30]  Mao-lin Liang,et al.  An efficient algorithm for the generalized centro-symmetric solution of matrix equation A X B = C , 2007, Numerical Algorithms.

[31]  Feng Ding,et al.  On Iterative Solutions of General Coupled Matrix Equations , 2006, SIAM J. Control. Optim..

[32]  M. Dehghan,et al.  The general coupled matrix equations over generalized bisymmetric matrices , 2010 .

[33]  Qing-Wen Wang,et al.  THE REFLEXIVE RE-NONNEGATIVE DEFINITE SOLUTION TO A QUATERNION MATRIX EQUATION ∗ , 2008 .

[34]  Jie Sheng,et al.  Convergence of stochastic gradient estimation algorithm for multivariable ARX-like systems , 2010, Comput. Math. Appl..

[35]  Feng Ding,et al.  Transformations between some special matrices , 2010, Comput. Math. Appl..

[36]  Musheng Wei,et al.  Iterative algorithms for solving the matrix equation AXB+CXTD=E , 2007, Appl. Math. Comput..

[37]  B. AfeArd CALCULATING THE SINGULAR VALUES AND PSEUDOINVERSE OF A MATRIX , 2022 .

[38]  D. Kleinman On an iterative technique for Riccati equation computations , 1968 .

[39]  Guang-Ren Duan,et al.  On the solution to the Sylvester matrix equation AV+BW=EVF , 1996, IEEE Trans. Autom. Control..

[40]  Feng Ding,et al.  Hierarchical Least Squares Identification for Linear SISO Systems With Dual-Rate Sampled-Data , 2011, IEEE Transactions on Automatic Control.