Distributed Evolutionary Graph Partitioning

We present a novel distributed evolutionary algorithm, KaFFPaE, to solve the Graph Partitioning Problem, which makes use of KaFFPa (Karlsruhe Fast Flow Partitioner). The use of our multilevel graph partitioner KaFFPa provides new effective crossover and mutation operators. By combining these with a scalable communication protocol we obtain a system that is able to improve the best known partitioning results for many inputs in a very short amount of time. For example, in Walshaw's well known benchmark tables we are able to improve or recompute 76% of entries for the tables with 1%, 3% and 5% imbalance.

[1]  Peter Sanders,et al.  Engineering a scalable high quality graph partitioner , 2009, 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS).

[2]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[3]  Peter Sanders,et al.  Combining Hierarchical and Goal-Directed Speed-Up Techniques for Dijkstra's Algorithm , 2008, WEA.

[4]  Pierre Chardaire,et al.  A PROBE-Based Heuristic for Graph Partitioning , 2007, IEEE Transactions on Computers.

[5]  Vitaly Osipov,et al.  n-Level Graph Partitioning , 2010, ESA.

[6]  Curt Jones,et al.  Finding Good Approximate Vertex and Edge Partitions is NP-Hard , 1992, Inf. Process. Lett..

[7]  Peter Sanders,et al.  Engineering Algorithms for Approximate Weighted Matching , 2007, WEA.

[8]  R. M. Mattheyses,et al.  A Linear-Time Heuristic for Improving Network Partitions , 1982, 19th Design Automation Conference.

[9]  Chris Walshaw,et al.  A Combined Evolutionary Search and Multilevel Optimisation Approach to Graph-Partitioning , 2004, J. Glob. Optim..

[10]  Mahmoud Fouz,et al.  Asymptotically Optimal Randomized Rumor Spreading , 2010, Electron. Notes Discret. Math..

[11]  Peter Sanders,et al.  Engineering Route Planning Algorithms , 2009, Algorithmics of Large and Complex Networks.

[12]  Chris Walshaw,et al.  Multilevel Refinement for Combinatorial Optimisation Problems , 2004, Ann. Oper. Res..

[13]  Stefan Hougardy,et al.  A simple approximation algorithm for the weighted matching problem , 2003, Inf. Process. Lett..

[14]  Vipin Kumar,et al.  Parallel Multilevel k-way Partitioning Scheme for Irregular Graphs , 1996, Proceedings of the 1996 ACM/IEEE Conference on Supercomputing.

[15]  Bernard Manderick,et al.  The Weighted Graph Bi-Partitioning Problem: A Look at GA Performance , 1994, PPSN.

[16]  Enrique Alba,et al.  Parallelism and evolutionary algorithms , 2002, IEEE Trans. Evol. Comput..

[17]  Andrew V. Goldberg,et al.  Graph Partitioning with Natural Cuts , 2011, 2011 IEEE International Parallel & Distributed Processing Symposium.

[18]  Yong-Hyuk Kim,et al.  Genetic approaches for graph partitioning: a survey , 2011, GECCO '11.

[19]  David E. Goldberg,et al.  Genetic Algorithms, Tournament Selection, and the Effects of Noise , 1995, Complex Syst..

[20]  Andrew B. Kahng,et al.  A new adaptive multi-start technique for combinatorial global optimizations , 1994, Oper. Res. Lett..

[21]  Peter Sanders,et al.  Engineering Multilevel Graph Partitioning Algorithms , 2010, ESA.

[22]  Colin R. Reeves,et al.  Evolutionary computation: a unified approach , 2007, Genetic Programming and Evolvable Machines.

[23]  Jin-Kao Hao,et al.  A Multilevel Memetic Approach for Improving Graph k-Partitions , 2011, IEEE Transactions on Evolutionary Computation.

[24]  Robert van Engelen,et al.  Graph Partitioning for High Performance Scienti c Simulations , 2000 .

[25]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[26]  Chris Walshaw,et al.  Mesh Partitioning: A Multilevel Balancing and Refinement Algorithm , 2000, SIAM J. Sci. Comput..

[27]  C. Walshaw JOSTLE : parallel multilevel graph-partitioning software – an overview , 2008 .