On Bound States Concentrating on Spheres for the Maxwell-Schrödinger Equation

We study the semiclassical limit for the following system of Maxwell--Schrodinger equations: \[ -\frac{\hbar^2}{2m}\Delta v + v + \omega\phi v - \gamma v^{p} =0, \;\; -\Delta\phi = 4\pi\omega v^2, \] where $\hbar$, m, $\omega$, $\gamma >0$, v, $\phi: \mathbb{R}^3 \to \mathbb{R}$, $1 < p < \frac{11}{7}$. This system describes standing waves for the nonlinear Schrodinger equation interacting with the electrostatic field: the unknowns v and $\phi$ represent the \emph{wave function} associated to the particle and the electric potential, respectively. By using localized energy method, we construct a family of positive radially symmetric bound states $(v_\hbar, \phi_\hbar)$ such that $v_\hbar$ concentrates around a sphere $\{|x| = s_0\}$ when $\hbar \to 0$.

[1]  Walter A. Strauss,et al.  Existence of solitary waves in higher dimensions , 1977 .

[2]  M. Pino,et al.  Local mountain passes for semilinear elliptic problems in unbounded domains , 1996 .

[3]  A. Malchiodi,et al.  Boundary concentration phenomena for a singularly perturbed elliptic problem , 2002 .

[4]  Juncheng Wei,et al.  On interacting bumps of semi-classical states of nonlinear Schrödinger equations , 2000, Advances in Differential Equations.

[5]  Alan Weinstein,et al.  Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential , 1986 .

[6]  Juncheng Wei On the Construction of Single-Peaked Solutions to a Singularly Perturbed Semilinear Dirichlet Problem , 1996 .

[7]  M. Grossi Some results on a class of nonliner Schrödinger equations , 2000 .

[8]  A. Ambrosetti,et al.  Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres, part II , 2004 .

[9]  Juncheng Wei On the Boundary Spike Layer Solutions to a Singularly Perturbed Neumann Problem , 1997 .

[10]  Matthias Winter,et al.  Multiple boundary peak solutions for some singularly perturbed Neumann problems , 2000 .

[11]  W. Ni,et al.  On the shape of least‐energy solutions to a semilinear Neumann problem , 1991 .

[12]  W. Ni,et al.  On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems , 1995 .

[13]  A. Malchiodi,et al.  Multidimensional boundary layers for a singularly perturbed Neumann problem , 2004 .

[14]  W. Ni,et al.  Locating the peaks of least energy solutions to a semilinear Neumann problem , 1993 .

[15]  T. D’Aprile Semiclassical states for the nonlinear Schrödinger equation with the electromagnetic field , 2007 .

[16]  Juncheng Wei,et al.  On the Role of Mean Curvature in Some Singularly Perturbed Neumann Problems , 1999, SIAM J. Math. Anal..

[17]  A. Malchiodi Concentration at curves for a singularly perturbed Neumann problem in three-dimensional domains , 2005 .

[18]  Li Yanyan,et al.  On a singularly perturbed equation with neumann boundary condition , 1998 .

[19]  P. Felmer,et al.  Semi-classical states of nonlinear Schrödinger equations: a variational reduction method , 2002 .

[20]  W. Ni,et al.  On the location and profile of spike-layer solutions to a singularly perturbed semilinear Dirichlet problem: Intermediate solutions , 1998 .

[21]  Solitary waves for Maxwell Schrodinger equations , 2003, math/0303142.

[22]  Yanyan Li On a singularly perturbed elliptic equation , 1997, Advances in Differential Equations.

[23]  W. Ni,et al.  Multiple clustered layer solutions for semilinear Neumann problems on a ball , 2005 .

[24]  Pierre-Louis Lions,et al.  Nonlinear scalar field equations, I existence of a ground state , 1983 .

[25]  M. Pino,et al.  Multi-peak bound states for nonlinear Schrödinger equations , 1998 .

[26]  M. Badiale,et al.  Concentration around a sphere for a singularly perturbed Schrödinger equation , 2002 .

[27]  A. Ambrosetti,et al.  Singularly Perturbed Elliptic Equations with Symmetry: Existence of Solutions Concentrating on Spheres, Part I , 2003 .

[28]  Xuefeng Wang On concentration of positive bound states of nonlinear Schrödinger equations , 1993 .

[29]  Y. Oh On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential , 1990 .

[30]  Vieri Benci,et al.  An eigenvalue problem for the Schrödinger-Maxwell equations , 1998 .

[31]  Juncheng Wei,et al.  Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory , 2000 .

[32]  V. Benci,et al.  The Semiclassical Limit of the Nonlinear Schrödinger Equation in a Radial Potential , 2002 .

[33]  C. Gui Multipeak solutions for a semilinear Neumann problem , 1996 .

[34]  Changfeng Gui,et al.  Multiple interior peak solutions for some singularly perturbed neumann problems , 1999 .

[35]  M. Pino,et al.  Semi-classical States for Nonlinear Schrödinger Equations , 1997 .

[36]  A. Ambrosetti,et al.  Semiclassical States of Nonlinear Schrödinger Equations , 1997 .

[37]  Changfeng Gui,et al.  On Multiple Mixed Interior and Boundary Peak Solutions for Some Singularly Perturbed Neumann Problems , 2000, Canadian Journal of Mathematics.