Decoherence in two-dimensional quantum walks using four- and two-state particles

We study the decoherence effects originating from state flipping and depolarization for two-dimensional discrete-time quantum walks using four- and two-state particles. By comparing the quantum correlations between the two spatial (x − y) degrees of freedom using measurement-induced disturbance, we show that the two schemes using a two-state particle are more robust against decoherence than the Grover walk, which uses a four-state particle. We also show that the symmetries which hold for two-state quantum walks break down for the Grover walk, adding to the various other advantages of using two-state rather than four-state particles.

[1]  D. Meyer From quantum cellular automata to quantum lattice gases , 1996, quant-ph/9604003.

[2]  Takuya Kitagawa,et al.  Exploring topological phases with quantum walks , 2010, 1003.1729.

[3]  R. Karandikar,et al.  Sankhyā, The Indian Journal of Statistics , 2006 .

[4]  Jiangfeng Du,et al.  Experimental implementation of a quantum random-walk search algorithm using strongly dipolar coupled spins , 2010 .

[5]  Andris Ambainis,et al.  QUANTUM WALKS AND THEIR ALGORITHMIC APPLICATIONS , 2003, quant-ph/0403120.

[6]  D. R. Cox Journal of Applied Probability , 1964, Canadian Mathematical Bulletin.

[7]  Ozgur E. Mustecaplioglu,et al.  Decoherence in two-dimensional quantum random walks with traps , 2009, 0909.1353.

[8]  A Aspuru-Guzik,et al.  Discrete single-photon quantum walks with tunable decoherence. , 2010, Physical review letters.

[9]  Raymond Laflamme,et al.  Optimizing the discrete time quantum walk using a SU(2) coin , 2007, 0711.1882.

[10]  Eric Bach,et al.  One-dimensional quantum walks with absorbing boundaries , 2004, J. Comput. Syst. Sci..

[11]  S. Barnett,et al.  Quantum walk with a four-dimensional coin , 2011, 1103.0126.

[12]  R. Srikanth,et al.  Symmetry-noise interplay in a quantum walk on an n-cycle , 2008, 0803.4453.

[13]  Michael Mc Gettrick,et al.  Alternate two-dimensional quantum walk with a single-qubit coin , 2011, 1107.4400.

[14]  C. M. Chandrashekar Implementing the one-dimensional quantum (Hadamard) walk using a Bose-Einstein condensate , 2006 .

[15]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[16]  Dieter Meschede,et al.  Quantum Walk in Position Space with Single Optically Trapped Atoms , 2009, Science.

[17]  R. Srikanth,et al.  Relationship between quantum walks and relativistic quantum mechanics , 2010, 1003.4656.

[18]  J Glueckert,et al.  Quantum walk of a trapped ion in phase space. , 2009, Physical review letters.

[19]  Norio Konno,et al.  Quantum Random Walks in One Dimension , 2002, Quantum Inf. Process..

[20]  Igor Jex,et al.  Recurrence properties of unbiased coined quantum walks on infinite d -dimensional lattices , 2008, 0805.1322.

[21]  C. M. Chandrashekar,et al.  Quantumness of noisy quantum walks: a comparison between measurement-induced disturbance and quantum discord , 2010, 1012.5040.

[22]  Michael Mc Gettrick,et al.  Mimicking the probability distribution of a two-dimensional Grover walk with a single-qubit coin. , 2010, Physical review letters.

[23]  Norio Konno,et al.  Localization of two-dimensional quantum walks , 2004 .

[24]  E. Farhi,et al.  Quantum computation and decision trees , 1997, quant-ph/9706062.

[25]  Vivien M. Kendon,et al.  Decoherence in quantum walks – a review , 2006, Mathematical Structures in Computer Science.

[26]  Renato Portugal,et al.  Decoherence in two-dimensional quantum walks , 2006 .

[27]  R. Srikanth,et al.  Symmetries and noise in quantum walk , 2007 .

[28]  R. Blatt,et al.  Realization of a quantum walk with one and two trapped ions. , 2009, Physical review letters.

[29]  Clement Ampadu,et al.  Brun-Type Formalism for Decoherence in Two-Dimensional Quantum Walks , 2011, 1104.2061.

[30]  Aharonov,et al.  Quantum random walks. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[31]  C. M. Chandrashekar,et al.  Spatial entanglement using a quantum walk on a many-body system , 2009, 0901.0671.

[32]  G. Vallone,et al.  Two-particle bosonic-fermionic quantum walk via integrated photonics. , 2011, Physical review letters.

[33]  R. Feynman Quantum mechanical computers , 1986 .

[34]  S. Luo Using measurement-induced disturbance to characterize correlations as classical or quantum , 2008 .

[35]  Roberto Morandotti,et al.  Realization of quantum walks with negligible decoherence in waveguide lattices. , 2007, Physical review letters.

[36]  C. Ross Found , 1869, The Dental register.

[37]  Raymond Laflamme,et al.  Quantum phase transition using quantum walks in an optical lattice , 2007, Physical Review A.

[38]  Will Flanagan,et al.  Controlling discrete quantum walks: coins and initial states , 2003 .

[39]  Sung Dahm Oh,et al.  Convex-roof extended negativity as an entanglement measure for bipartite quantum systems , 2003, quant-ph/0310027.

[40]  T. Mančal,et al.  Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems , 2007, Nature.

[41]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[42]  S. Adzhiev,et al.  Entropy in the sense of Boltzmann and Poincaré , 2014, Contemporary Mathematics. Fundamental Directions.

[43]  K. R. Parthasarathy,et al.  The Passage From Random Walk to Diffusion in Quantum Probability , 1988 .

[44]  A Schreiber,et al.  Photons walking the line: a quantum walk with adjustable coin operations. , 2009, Physical review letters.

[45]  J. Mompart,et al.  One- and two-dimensional quantum walks in arrays of optical traps , 2005 .

[46]  B. M. Fulk MATH , 1992 .

[47]  R. Laflamme,et al.  Experimental implementation of a discrete-time quantum random walk on an NMR quantum-information processor , 2005, quant-ph/0507267.

[48]  S. Lloyd,et al.  Environment-assisted quantum walks in photosynthetic energy transfer. , 2008, The Journal of chemical physics.

[49]  R. Srikanth,et al.  Quantumness in a decoherent quantum walk using measurement-induced disturbance , 2010, 1005.0183.

[50]  A Schreiber,et al.  Decoherence and disorder in quantum walks: from ballistic spread to localization. , 2011, Physical review letters.

[51]  Jiangfeng Du,et al.  Experimental implementation of the quantum random-walk algorithm , 2002, quant-ph/0203120.

[52]  Jeong San Kim,et al.  Distribution and dynamics of entanglement in high-dimensional quantum systems using convex-roof extended negativity , 2010, 1006.0750.

[53]  E. W. Morris No , 1923, The Hospital and health review.

[54]  Seth Lloyd,et al.  Quantum Information Processing , 2009, Encyclopedia of Complexity and Systems Science.

[55]  Barry C. Sanders,et al.  Quantum walks in higher dimensions , 2002 .

[56]  A. Politi,et al.  Quantum Walks of Correlated Photons , 2010, Science.

[57]  C. M. Chandrashekar Disordered-quantum-walk-induced localization of a Bose-Einstein condensate , 2010, 1006.1978.