Colloidal Superstructures Programmed into Magnetic Janus Particles

By engineering thin magnetic films onto homogeneous colloidal particles, various crystalline lattices are induced from simple magnetic Janus spheres. In situ formation of dicolloids amplifies the diversity of achievable dynamic structures. The competition between shape anisotropy and dipole orientation generates mesoscopic isomerism. This opens design space for anisotropic building blocks for smart colloidal materials.

[1]  Nathan J. Jenness,et al.  Towards Holonomic Control of Janus Particles in Optomagnetic Traps , 2009, Advanced materials.

[2]  S. Davis,et al.  Colloids and Colloid Assemblies: Synthesis, Modification, Organization and Utilization of Colloid Particles , 2004 .

[3]  S. Glotzer,et al.  Anisotropy of building blocks and their assembly into complex structures. , 2007, Nature materials.

[4]  S. Granick,et al.  Electric field-induced assembly of monodisperse polyhedral metal-organic framework crystals. , 2013, Journal of the American Chemical Society.

[5]  J. Dobnikar,et al.  Emergent colloidal dynamics in electromagnetic fields , 2013 .

[6]  Takuji Ishikawa,et al.  Dancing volvox: hydrodynamic bound states of swimming algae. , 2009, Physical review letters.

[7]  T. Vissers,et al.  Bonding Assembled Colloids without Loss of Colloidal Stability , 2012, Advanced materials.

[8]  S. Klapp,et al.  Pattern formation of dipolar colloids in rotating fields: layering and synchronization , 2011, 1103.0925.

[9]  Chekesha M. Liddell,et al.  Magnetically responsive and hollow colloids from nonspherical core–shell particles of peanut-like shape , 2009 .

[10]  Erik Luijten,et al.  Janus Particle Synthesis and Assembly , 2010, Advanced materials.

[11]  G. Hu,et al.  Magnetization reversal in a novel gradient nanomaterial. , 2006, Physical review letters.

[12]  Zhenzhong Yang,et al.  Rational Design and Synthesis of Janus Composites , 2014, Advanced materials.

[13]  Le He,et al.  Magnetic field guided colloidal assembly , 2013 .

[14]  S. Kazer,et al.  Well-defined nanofibers with tunable morphology from spherical colloidal building blocks. , 2013, Angewandte Chemie.

[15]  Steve Granick,et al.  Colloidal ribbons and rings from Janus magnetic rods , 2013, Nature Communications.

[16]  Denys Makarov,et al.  Fuel-free locomotion of Janus motors: magnetically induced thermophoresis. , 2013, ACS nano.

[17]  Johannes Boneberg,et al.  Magnetic multilayers on nanospheres , 2005, Nature materials.

[18]  Aggregation of magnetic holes in a rotating magnetic field. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Erik Luijten,et al.  Linking synchronization to self-assembly using magnetic Janus colloids , 2012, Nature.

[20]  Orlin D. Velev,et al.  Reconfigurable responsive structures assembled from magnetic Janus particles , 2009 .

[21]  Di Du,et al.  Generating an in situ tunable interaction potential for probing 2-D colloidal phase behavior , 2013 .

[22]  D Frenkel,et al.  Field-induced self-assembly of suspended colloidal membranes. , 2009, Physical review letters.

[23]  Cai‐Feng Wang,et al.  Versatile Bifunctional Magnetic‐Fluorescent Responsive Janus Supraballs Towards the Flexible Bead Display , 2011, Advanced materials.

[24]  Alexey Snezhko,et al.  Magnetic manipulation of self-assembled colloidal asters. , 2011, Nature materials.

[25]  Pietro Tierno,et al.  Magnetically Driven Janus Micro‐Ellipsoids Realized via Asymmetric Gathering of the Magnetic Charge , 2011, Advanced materials.

[26]  C. Neugebauer Saturation Magnetization of Nickel Films of Thickness Less Than 100 A , 1959 .

[27]  Alfons van Blaaderen,et al.  Directing Colloidal Self‐Assembly with Biaxial Electric Fields , 2009 .

[28]  Yadong Yin,et al.  Magnetically Tunable Colloidal Photonic Structures in Alkanol Solutions , 2008 .

[29]  Younan Xia,et al.  Quick, Large‐Area Assembly of a Single‐Crystal Monolayer of Spherical Particles by Unidirectional Rubbing , 2014, Advanced materials.

[30]  Gi-Ra Yi,et al.  Shaping colloids for self-assembly , 2013, Nature Communications.

[31]  George M. Whitesides,et al.  Dynamic self-assembly of magnetized, millimetre-sized objects rotating at a liquid–air interface , 2000, Nature.

[32]  Pieranski,et al.  Nonlinear phenomena in systems of magnetic holes. , 1990, Physical review letters.

[33]  Howon Lee,et al.  Programming magnetic anisotropy in polymeric microactuators. , 2011, Nature materials.

[34]  Erik Luijten,et al.  Triblock colloids for directed self-assembly. , 2011, Journal of the American Chemical Society.

[35]  I. Kretzschmar,et al.  Assembly behavior of iron oxide-capped Janus particles in a magnetic field. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[36]  S. Granick,et al.  Simple method to produce Janus colloidal particles in large quantity. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[37]  M. Dijkstra,et al.  Phase diagram of dipolar hard and soft spheres: manipulation of colloidal crystal structures by an external field. , 2005, Physical review letters.

[38]  James E. Martin Using triaxial magnetic fields to create optimal particle composites , 2005 .

[39]  J. Israelachvili Intermolecular and surface forces , 1985 .

[40]  Roy Clarke,et al.  Magnetically uniform and tunable Janus particles , 2011 .

[41]  Pietro Tierno,et al.  Viscoelasticity of dynamically self-assembled paramagnetic colloidal clusters. , 2007, Physical review letters.

[42]  S. Kantorovich,et al.  Ferrofluids with shifted dipoles: ground state structures , 2011 .

[43]  Y. Chiang,et al.  Controlled and rapid ordering of oppositely charged colloidal particles. , 2009, Journal of colloid and interface science.

[44]  James E. Martin,et al.  Field‐Structured Chemiresistors , 2006 .

[45]  Frank Caruso,et al.  Colloids and colloid assemblies : synthesis, modification, organization and utilization of colloid particles , 2004 .

[46]  André R Studart,et al.  Composites Reinforced in Three Dimensions by Using Low Magnetic Fields , 2012, Science.