Perception of biological motion in visual agnosia

Over the past 25 years, visual processing has been discussed in the context of the dual stream hypothesis consisting of a ventral (“what”) and a dorsal (“where”) visual information processing pathway. Patients with brain damage of the ventral pathway typically present with signs of visual agnosia, the inability to identify and discriminate objects by visual exploration, but show normal perception of motion perception. A dissociation between the perception of biological motion and non-biological motion has been suggested: perception of biological motion might be impaired when “non-biological” motion perception is intact and vice versa. The impact of object recognition on the perception of biological motion remains unclear. We thus investigated this question in a patient with severe visual agnosia, who showed normal perception of non-biological motion. The data suggested that the patient's perception of biological motion remained largely intact. However, when tested with objects constructed of coherently moving dots (“Shape-from-Motion”), recognition was severely impaired. The results are discussed in the context of possible mechanisms of biological motion perception.

[1]  A. Cowey,et al.  Blindness to form from motion despite intact static form perception and motion detection , 2000, Neuropsychologia.

[2]  R. Vogels,et al.  Functional differentiation of macaque visual temporal cortical neurons using a parametric action space. , 2009, Cerebral cortex.

[3]  D. V. van Essen,et al.  The Processing of Visual Shape in the Cerebral Cortex of Human and Nonhuman Primates: A Functional Magnetic Resonance Imaging Study , 2004, The Journal of Neuroscience.

[4]  M. Sereno,et al.  Point-Light Biological Motion Perception Activates Human Premotor Cortex , 2004, The Journal of Neuroscience.

[5]  Zoe Kourtzi,et al.  Shape Saliency Modulates Contextual Processing in the Human Lateral Occipital Complex , 2004, Journal of Cognitive Neuroscience.

[6]  Patrick Cavanagh,et al.  Perception of biological motion in parietal patients , 2003, Neuropsychologia.

[7]  Dorita H. F. Chang,et al.  Characterizing global and local mechanisms in biological motion perception. , 2009, Journal of vision.

[8]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  J. Lange,et al.  A Model of Biological Motion Perception from Configural Form Cues , 2006, The Journal of Neuroscience.

[10]  Z Kourtzi,et al.  Representation of Perceived Object Shape by the Human Lateral Occipital Complex , 2001, Science.

[11]  K. Nakayama,et al.  Intact “biological motion” and “structure from motion” perception in a patient with impaired motion mechanisms: A case study , 1990, Visual Neuroscience.

[12]  P. Sinha,et al.  Functional neuroanatomy of biological motion perception in humans , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Antonino Casile,et al.  Critical features for the recognition of biological motion. , 2005, Journal of vision.

[14]  N. Kanwisher,et al.  The lateral occipital complex and its role in object recognition , 2001, Vision Research.

[15]  T. Hendler,et al.  A hierarchical axis of object processing stages in the human visual cortex. , 2001, Cerebral cortex.

[16]  A. Dale,et al.  Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging , 1995, Nature.

[17]  Roberto Cipolla,et al.  Structure from motion , 2008 .

[18]  Johannes Rüter,et al.  The Anatomy of Object Recognition—Visual Form Agnosia Caused by Medial Occipitotemporal Stroke , 2009, The Journal of Neuroscience.

[19]  A. Cowey,et al.  Visual deficits in a patient with `kaleidoscopic disintegration of the visual world' , 2002, European journal of neurology.

[20]  R. Blake,et al.  Brain Areas Involved in Perception of Biological Motion , 2000, Journal of Cognitive Neuroscience.

[21]  Aina Puce,et al.  Electrophysiology and brain imaging of biological motion. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[22]  A. Binet,et al.  Méthodes nouvelles pour le diagnostic du niveau intellectuel des anormaux , 1904 .

[23]  A. J. Mistlin,et al.  Visual analysis of body movements by neurones in the temporal cortex of the macaque monkey: A preliminary report , 1985, Behavioural Brain Research.

[24]  A. Cowey,et al.  Regional cerebral correlates of global motion perception: evidence from unilateral cerebral brain damage. , 2001, Brain : a journal of neurology.

[25]  W. Newsome,et al.  A selective impairment of motion perception following lesions of the middle temporal visual area (MT) , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  M. Lappe,et al.  Visual areas involved in the perception of human movement from dynamic form analysis , 2005, Neuroreport.

[27]  J A Beintema,et al.  Perception of biological motion without local image motion , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Satoshi Umeda,et al.  Gaze but not arrows: A dissociative impairment after right superior temporal gyrus damage , 2006, Neuropsychologia.

[29]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[30]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[31]  R. Andersen,et al.  Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  W. Newsome,et al.  Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  Karl R. Gegenfurtner,et al.  Cortical networks for motion processing: Effects of focal brain lesions on perception of different motion types , 2009, Neuropsychologia.

[34]  N. Troje,et al.  The Inversion Effect in Biological Motion Perception: Evidence for a “Life Detector”? , 2006, Current Biology.

[35]  K. Nakayama,et al.  Adaptation aftereffects in the perception of gender from biological motion. , 2006, Journal of vision.

[36]  T D Albright,et al.  Visual motion perception. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[37]  R. Petersen,et al.  Clinical, genetic, and neuropathologic characteristics of posterior cortical atrophy , 2004, Neurology.

[38]  Leslie G. Ungerleider,et al.  Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys , 1982, Behavioural Brain Research.

[39]  A. Saygin Superior temporal and premotor brain areas necessary for biological motion perception. , 2007, Brain : a journal of neurology.

[40]  J. Hoffman,et al.  Intact Perception of Biological Motion in the Face of Profound Spatial Deficits: Williams Syndrome , 2002, Psychological science.

[41]  T. Schenk,et al.  Visual motion perception after brain damage: II. Deficits in form-from-motion perception , 1997, Neuropsychologia.

[42]  M. Posner,et al.  Attentional networks , 1994, Trends in Neurosciences.