A network approach for identifying and delimiting biogeographical regions

Biogeographical regions (geographically distinct assemblages of species and communities) constitute a cornerstone for ecology, biogeography, evolution and conservation biology. Species turnover measures are often used to quantify spatial biodiversity patterns, but algorithms based on similarity can be sensitive to common sampling biases in species distribution data. Here we apply a community detection approach from network theory that incorporates complex, higher order presence-absence patterns. We demonstrate the performance of the method by applying it to all amphibian species in the world (c. 6,100 species), all vascular plant species of the USA (c. 17,600), and a hypothetical dataset containing a zone of biotic transition. In comparison with current methods, our approach tackles the challenges posed by transition zones and succeeds in retrieving a larger number of commonly recognised biogeographical regions. This method can be applied to generate objective, data derived identification and delimitation of the world’s biogeographical regions.

[1]  J. Richardson,et al.  Insights into the historical construction of species-rich biomes from dated plant phylogenies, neutral ecological theory and phylogenetic community structure. , 2006, The New phytologist.

[2]  Mark Schildhauer,et al.  Habitat area and climate stability determine geographical variation in plant species range sizes , 2013, Ecology letters.

[3]  Daril A Vilhena,et al.  Provincialization of terrestrial faunas following the end-Permian mass extinction , 2013, Proceedings of the National Academy of Sciences.

[4]  Maria A. Gandolfo,et al.  Phylogenetic biome conservatism on a global scale , 2009, Nature.

[5]  I. Guarniero How Many Species Are There on Earth and in the Ocean? (PLOS Biology) , 2014 .

[6]  C. Pendry,et al.  Neotropical seasonally dry forests and Quaternary vegetation changes , 2000 .

[7]  Marcelo F Simon,et al.  Forgotten forests - issues and prospects in biome mapping using Seasonally Dry Tropical Forests as a case study , 2011, BMC Ecology.

[8]  H. C. Hanson Dictionary of Ecology , 1962 .

[9]  J. Morrone Biogeographical regionalisation of the Neotropical region. , 2014, Zootaxa.

[10]  George Gaylord Simpson,et al.  Mammals and the nature of continents , 1943 .

[11]  Güler Ergün Human sexual contact network as a bipartite graph , 2001 .

[12]  Michael D. Crisp Biome assembly: what we know and what we need to know , 2006 .

[13]  W. Thuiller,et al.  Predicting species distribution: offering more than simple habitat models. , 2005, Ecology letters.

[14]  Thomas M. Brooks,et al.  Global Biodiversity Conservation: The Critical Role of Hotspots , 2011 .

[15]  G. Powell,et al.  Terrestrial Ecoregions of the World: A New Map of Life on Earth , 2001 .

[16]  A. V. Humboldt,et al.  Essai sur la géographie des plantes , 1805 .

[17]  S. Ferrier,et al.  Phylogenetic generalised dissimilarity modelling: a new approach to analysing and predicting spatial turnover in the phylogenetic composition of communities , 2014 .

[18]  James Cowles Prichard,et al.  Researches Into the Physical History of Man , 1851 .

[19]  Kevin de Queiroz,et al.  Species Concepts and Species Delimitation , 2007 .

[20]  Shawn W. Laffan,et al.  A biogeographical regionalization of Australian Acacia species , 2013 .

[21]  James Cowle,et al.  Researches into the Physical History of Mankind , 1847, The Medico-chirurgical review.

[22]  S. Openshaw A million or so correlation coefficients : three experiments on the modifiable areal unit problem , 1979 .

[23]  R. Guralnick,et al.  Biodiversity informatics: automated approaches for documenting global biodiversity patterns and processes , 2009, Bioinform..

[24]  F. White,et al.  The AETFAT chorological classification of Africa: history, methods and applications , 1993 .

[25]  David J. Unwin,et al.  Practical Point Pattern Analysis , 2010 .

[26]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[27]  Susanne A. Fritz,et al.  An Update of Wallace’s Zoogeographic Regions of the World , 2013, Science.

[28]  Ranz,et al.  World Map of the Köppen-Geiger climate classification updated — Source link , 2006 .

[29]  James Cowles Prichard,et al.  The eastern origin of the Celtic nations proved by a comparison of their dialects with the Sanskrit, Greek, Latin, and Teutonic languages : forming a supplement to Researches into the physical history of mankind , 2014 .

[30]  Earl D. McCoy,et al.  Some Observations on the Use of Taxonomic Similarity in Large-Scale Biogeography , 1987 .

[31]  C. Nobre,et al.  Climate change consequences on the biome distribution in tropical South America , 2007 .

[32]  A. Knapp,et al.  Variation among biomes in temporal dynamics of aboveground primary production. , 2001, Science.

[33]  Carl T. Bergstrom,et al.  Bivalve network reveals latitudinal selectivity gradient at the end-Cretaceous mass extinction , 2013, Scientific Reports.

[34]  Philip Chan,et al.  Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms , 2004, 16th IEEE International Conference on Tools with Artificial Intelligence.

[35]  Jennifer L. Molnar,et al.  Marine Ecoregions of the World: A Bioregionalization of Coastal and Shelf Areas , 2007 .

[36]  Mark Vellend,et al.  Do commonly used indices of β‐diversity measure species turnover? , 2001 .

[37]  Martin Rosvall,et al.  Multilevel Compression of Random Walks on Networks Reveals Hierarchical Organization in Large Integrated Systems , 2010, PloS one.

[38]  Kevin J. Gaston,et al.  Measuring beta diversity for presence–absence data , 2003 .

[39]  J. Ragle,et al.  IUCN Red List of Threatened Species , 2010 .

[40]  Hanna Tuomisto,et al.  A diversity of beta diversities: straightening up a concept gone awry. Part 2. Quantifying beta diversity and related phenomena , 2010 .

[41]  Einar Eg Nielsen,et al.  Assigning individual fish to populations using microsatellite DNA markers , 2001 .

[42]  Philip Lutley Sclater,et al.  On the general Geographical Distribution of the Members of the Class Aves. , 1858 .

[43]  Martin Rosvall,et al.  Maps of random walks on complex networks reveal community structure , 2007, Proceedings of the National Academy of Sciences.

[44]  P. Jaccard,et al.  Etude comparative de la distribution florale dans une portion des Alpes et des Jura , 1901 .

[45]  J. Terborgh,et al.  Hyperdominance in the Amazonian Tree Flora , 2013, Science.

[46]  Walter Jetz,et al.  A framework for delineating biogeographical regions based on species distributions , 2010 .

[47]  W. Köppen,et al.  Versuch einer Klassifikation der Klimate : vorzugsweise nach ihren Beziehungen zur Pflanzenwelt , 1900 .

[48]  Carlos J. Melián,et al.  The nested assembly of plant–animal mutualistic networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[49]  V. Ball,et al.  The Geographical Distribution of Animals , 1868, The American Naturalist.

[50]  John-Arvid Grytnes,et al.  Niche conservatism as an emerging principle in ecology and conservation biology. , 2010, Ecology letters.

[51]  L. R. Dice Measures of the Amount of Ecologic Association Between Species , 1945 .

[52]  Juan J. Morrone,et al.  On biotas and their names , 2014 .

[53]  T. McMahon,et al.  Updated world map of the Köppen-Geiger climate classification , 2007 .

[54]  Hélène Morlon,et al.  Macroevolutionary perspectives to environmental change. , 2013, Ecology letters.

[55]  K. de Queiroz,et al.  Species concepts and species delimitation. , 2007, Systematic biology.

[56]  Walter Jetz,et al.  Comment on “An Update of Wallace’s Zoogeographic Regions of the World” , 2013, Science.

[57]  C. Mora,et al.  How Many Species Are There on Earth and in the Ocean? , 2011, PLoS biology.

[58]  Georgina M. Mace,et al.  Distorted Views of Biodiversity: Spatial and Temporal Bias in Species Occurrence Data , 2010, PLoS biology.

[59]  B. Rudolf,et al.  World Map of the Köppen-Geiger climate classification updated , 2006 .

[60]  Alexander von Humboldt Essai sur la geographie des plantes, 1807 , 1959 .

[61]  Elmer Drew Merrill,et al.  Distribution of life in the Philippines , 1975 .

[62]  G. Ergun Human Sexual Contact Network as a Bipartite Graph , 2001, cond-mat/0111323.

[63]  Mathieu Bastian,et al.  Gephi: An Open Source Software for Exploring and Manipulating Networks , 2009, ICWSM.

[64]  C. Stults,et al.  A Numerical Analysis of the Distributional Patterns of North American Mammals , 1964 .

[65]  Kyle G. Dexter,et al.  Steege Hyperdominance in the Amazonian Tree Flora , 2013 .

[66]  Shawn W. Laffan Spatial non-stationarity, anisotropy and scale: The interactive visualisation of spatial turnover , 2011 .

[67]  Niklaus E. Zimmermann,et al.  PAPER Where are the wild things? Why we need better data on species distribution , 2014 .

[68]  Daniele Silvestro,et al.  A Bayesian framework to estimate diversification rates and their variation through time and space , 2011, BMC Evolutionary Biology.

[69]  A. Antonelli,et al.  Neotropical Plant Evolution: Assembling the Big Picture , 2013 .

[70]  T. Stadler,et al.  Amazonia Through Time: Andean Uplift, Climate Change, Landscape Evolution, and Biodiversity , 2010, Science.

[71]  G. Allen,et al.  Freshwater Ecoregions of the World: A New Map of Biogeographic Units for Freshwater Biodiversity Conservation , 2008 .

[72]  J. Cornuet,et al.  Analytical bayesian approach for assigning individuals to populations. , 2004, The Journal of heredity.

[73]  Stephen P. Hubbell,et al.  A Phylogenetic Perspective on the Distribution of Plant Diversity , 2008 .