New Estimates for Exponentially Convex Functions via Conformable Fractional Operator

In this paper, we derive a new Hermite–Hadamard inequality for exponentially convex functions via α -fractional integral. We also prove a new integral identity. Using this identity, we establish several Hermite–Hadamard type inequalities for exponentially convexity, which can be obtained from our results. Some special cases are also discussed.

[1]  S. Dragomir,et al.  Some Hermite-Hadamard type inequalities for functions whose exponentials are convex , 2015 .

[2]  Shanhe Wu On the Weighted Generalization of the Hermite-Hadamard Inequality and its Applications , 2009 .

[3]  Mehmet Zeki Sarikaya,et al.  Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities , 2013, Math. Comput. Model..

[4]  B. Gavrea,et al.  On some Ostrowski type inequalities , 2010 .

[5]  Muhammad Aslam Noor,et al.  Some developments in general variational inequalities , 2004, Appl. Math. Comput..

[6]  Roshdi Khalil,et al.  CONFORMABLE FRACTIONAL HEAT DIFFERENTIAL EQUATION , 2014 .

[7]  Tadeusz Antczak,et al.  (p, r)-Invex Sets and Functions☆ , 2001 .

[8]  M. Özdemir,et al.  HADAMARD TYPE INEQUALITIES FORm-CONVEX AND (,m )-CONVEX FUNCTIONS , 2008 .

[9]  Feng Qi (祁锋),et al.  Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals of (α,m)-convex functions , 2014 .

[10]  Rudolf Mathar,et al.  On Exponentially Concave Functions and Their Impact in Information Theory , 2018, 2018 Information Theory and Applications Workshop (ITA).

[11]  New generalized Hermite-Hadamard type inequalities and applications to special means , 2013 .

[12]  Udita N. Katugampola A NEW APPROACH TO GENERALIZED FRACTIONAL DERIVATIVES , 2011, 1106.0965.

[13]  M. A. Hammad,et al.  ABEL'S FORMULA AND WRONSKIAN FOR CONFORMABLE FRACTIONAL DIFFERENTIAL EQUATIONS , 2014 .

[14]  Thabet Abdeljawad,et al.  On conformable fractional calculus , 2015, J. Comput. Appl. Math..

[15]  Ting-Kam Leonard Wong,et al.  Exponentially concave functions and a new information geometry , 2016, ArXiv.

[16]  Y. Sawano,et al.  On the Gagliardo-Nirenberg type inequality in the critical Sobolev-Morrey space , 2013 .

[17]  M. Cowling,et al.  Hardy and uncertainty inequalities on stratified Lie groups , 2013, 1308.2373.

[18]  H. Gunawan,et al.  Fractional Integrals and Generalized Olsen Inequalities , 2009 .

[19]  M. Noor,et al.  Hermite-Hadamard Inequalities for Exponentially Convex Functions , 2018 .

[20]  M. Sababheh,et al.  A new definition of fractional derivative , 2014, J. Comput. Appl. Math..