CO2 enhances the formation, nutrient scavenging and drug resistance properties of C. albicans biofilms

[1]  Viktorija Makarovaite,et al.  Precision Antifungal Treatment Significantly Extends Voice Prosthesis Lifespan in Patients Following Total Laryngectomy , 2020, Frontiers in Microbiology.

[2]  Rohitash Kumar,et al.  Iron Chelator Deferasirox Reduces Candida albicans Invasion of Oral Epithelial Cells and Infection Levels in Murine Oropharyngeal Candidiasis , 2019, Antimicrobial Agents and Chemotherapy.

[3]  Yuncong Yuan,et al.  CO2 Signaling through the Ptc2-Ssn3 Axis Governs Sustained Hyphal Development of Candida albicans by Reducing Ume6 Phosphorylation and Degradation , 2019, mBio.

[4]  W. Wong,et al.  Transcriptomic and Genomic Approaches for Unravelling Candida albicans Biofilm Formation and Drug Resistance—An Update , 2018, Genes.

[5]  Marius van den Beek,et al.  The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update , 2018, Nucleic Acids Res..

[6]  Alexander D. Johnson,et al.  Development and regulation of single- and multi-species Candida albicans biofilms , 2017, Nature Reviews Microbiology.

[7]  H. Sychrová,et al.  Characterization of the Candida albicans Amino Acid Permease Family: Gap2 Is the Only General Amino Acid Permease and Gap4 Is an S-Adenosylmethionine (SAM) Transporter Required for SAM-Induced Morphogenesis , 2016, mSphere.

[8]  T. Coenye,et al.  Stimulation of superoxide production increases fungicidal action of miconazole against Candida albicans biofilms , 2016, Scientific Reports.

[9]  S. Sutrina,et al.  2-Deoxy-d-glucose is a potent inhibitor of biofilm growth in Escherichia coli. , 2016, Microbiology.

[10]  Alexander D. Johnson,et al.  Candida albicans Biofilms and Human Disease. , 2015, Annual review of microbiology.

[11]  Alexander D. Johnson,et al.  An expanded regulatory network temporally controls C andida albicans biofilm formation , 2015, Molecular microbiology.

[12]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[13]  C. Gourlay,et al.  Candida biofilm formation on voice prostheses. , 2015, Journal of medical microbiology.

[14]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[15]  D. Hogan,et al.  Analysis of Candida albicans Mutants Defective in the Cdk8 Module of Mediator Reveal Links between Metabolism and Biofilm Formation , 2014, PLoS genetics.

[16]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[17]  J. Bernhardt,et al.  Novel Entries in a Fungal Biofilm Matrix Encyclopedia , 2014, mBio.

[18]  A. Sellam,et al.  Modeling the Transcriptional Regulatory Network That Controls the Early Hypoxic Response in Candida albicans , 2014, Eukaryotic Cell.

[19]  D. Soll,et al.  Identification of Genes Upregulated by the Transcription Factor Bcr1 That Are Involved in Impermeability, Impenetrability, and Drug Resistance of Candida albicans a/α Biofilms , 2013, Eukaryotic Cell.

[20]  S. Noble,et al.  Post-Transcriptional Regulation of the Sef1 Transcription Factor Controls the Virulence of Candida albicans in Its Mammalian Host , 2012, PLoS pathogens.

[21]  Judith Berman Candida albicans , 2012, Current Biology.

[22]  H. Harmsen,et al.  Composition and architecture of biofilms on used voice prostheses , 2012, Head & neck.

[23]  S. Sayed,et al.  Microbial colonization of Blom-Singer Indwelling Voice Prostheses in Laryngectomized Patients: A Perspective from India , 2012, Ear, nose, & throat journal.

[24]  A. Mitchell,et al.  Fungal Biofilms , 2012, PLoS pathogens.

[25]  Alexander D. Johnson,et al.  A Recently Evolved Transcriptional Network Controls Biofilm Development in Candida albicans , 2012, Cell.

[26]  Edith D. Wong,et al.  Saccharomyces Genome Database: the genomics resource of budding yeast , 2011, Nucleic Acids Res..

[27]  Marek S. Skrzypek,et al.  The Candida genome database incorporates multiple Candida species: multispecies search and analysis tools with curated gene and protein information for Candida albicans and Candida glabrata , 2011, Nucleic Acids Res..

[28]  B. Tuch,et al.  An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis. , 2011, Cell host & microbe.

[29]  A. Mitchell,et al.  Mucosal biofilms of Candida albicans. , 2011, Current opinion in microbiology.

[30]  K. Natarajan,et al.  Cap2-HAP Complex Is a Critical Transcriptional Regulator That Has Dual but Contrasting Roles in Regulation of Iron Homeostasis in Candida albicans* , 2011, The Journal of Biological Chemistry.

[31]  A. Mitchell,et al.  Genetic control of Candida albicans biofilm development , 2011, Nature Reviews Microbiology.

[32]  Gary D Bader,et al.  Enrichment Map: A Network-Based Method for Gene-Set Enrichment Visualization and Interpretation , 2010, PloS one.

[33]  D. Higgins,et al.  Regulation of the Hypoxic Response in Candida albicans , 2010, Eukaryotic Cell.

[34]  J. Lopez-Ribot,et al.  The Transcriptional Regulator Nrg1p Controls Candida albicans Biofilm Formation and Dispersion , 2010, Eukaryotic Cell.

[35]  H. Sanchez,et al.  Genetic basis of Candida biofilm resistance due to drug-sequestering matrix glucan. , 2010, The Journal of infectious diseases.

[36]  D. Andes,et al.  Role of Fks1p and Matrix Glucan in Candida albicans Biofilm Resistance to an Echinocandin, Pyrimidine, and Polyene , 2010, Antimicrobial Agents and Chemotherapy.

[37]  Victoria Chen,et al.  Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity , 2010, Nature Genetics.

[38]  T. Rukavina,et al.  Microbial colonization of tracheoesophageal voice prostheses (Provox2) following total laryngectomy , 2010, European Archives of Oto-Rhino-Laryngology.

[39]  J. Lopez-Ribot,et al.  Presence of Extracellular DNA in the Candida albicans Biofilm Matrix and its Contribution to Biofilms , 2010, Mycopathologia.

[40]  Alexander D. Johnson,et al.  A Phenotypic Profile of the Candida albicans Regulatory Network , 2009, PLoS genetics.

[41]  D. Andes,et al.  Time course global gene expression analysis of an in vivo Candida biofilm. , 2009, The Journal of infectious diseases.

[42]  Scott G. Filler,et al.  The Hyphal-Associated Adhesin and Invasin Als3 of Candida albicans Mediates Iron Acquisition from Host Ferritin , 2008, PLoS pathogens.

[43]  A. Mitchell,et al.  Complementary Adhesin Function in C. albicans Biofilm Formation , 2008, Current Biology.

[44]  Mingchun Li,et al.  Candida albicans Ferric Reductases Are Differentially Regulated in Response to Distinct Forms of Iron Limitation by the Rim101 and CBF Transcription Factors , 2008, Eukaryotic Cell.

[45]  M. Ghannoum,et al.  Temporal analysis of Candida albicans gene expression during biofilm development. , 2007, Microbiology.

[46]  D. Andes,et al.  Putative Role of β-1,3 Glucans in Candida albicans Biofilm Resistance , 2006, Antimicrobial Agents and Chemotherapy.

[47]  J. Lopez-Ribot,et al.  Proteomics for the analysis of the Candida albicans biofilm lifestyle , 2006, Proteomics.

[48]  J. Lopez-Ribot,et al.  Biofilm formation by Candida albicans mutants for genes coding fungal proteins exhibiting the eight-cysteine-containing CFEM domain. , 2006, FEMS yeast research.

[49]  K. Lewis,et al.  Candida albicans Biofilms Produce Antifungal-Tolerant Persister Cells , 2006, Antimicrobial Agents and Chemotherapy.

[50]  Yue Wang,et al.  RA domain‐mediated interaction of Cdc35 with Ras1 is essential for increasing cellular cAMP level for Candida albicans hyphal development , 2006, Molecular microbiology.

[51]  M. Sudhakar,et al.  Carbon dioxide transport , 2005 .

[52]  M. Tuite,et al.  Fungal Adenylyl Cyclase Integrates CO2 Sensing with cAMP Signaling and Virulence , 2005, Current Biology.

[53]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[54]  M. Cormican,et al.  Quantification of ALS1 gene expression in Candida albicans biofilms by RT-PCR using hybridisation probes on the LightCycler. , 2005, Molecular and cellular probes.

[55]  R. Darouiche,et al.  Candida Infections of Medical Devices , 2004, Clinical Microbiology Reviews.

[56]  M. Ghannoum,et al.  Mechanism of Fluconazole Resistance in Candida albicans Biofilms: Phase-Specific Role of Efflux Pumps and Membrane Sterols , 2003, Infection and Immunity.

[57]  L. J. Douglas,et al.  Candida biofilms and their role in infection. , 2003, Trends in microbiology.

[58]  Judith Berman,et al.  Candida albicans: A molecular revolution built on lessons from budding yeast , 2002, Nature Reviews Genetics.

[59]  Gordon Ramage,et al.  The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. , 2002, FEMS microbiology letters.

[60]  D. Dignard,et al.  Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans , 2001, Molecular microbiology.

[61]  M. Whiteway,et al.  Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans. , 2001, Molecular biology of the cell.

[62]  R. Donlan Biofilm formation: a clinically relevant microbiological process. , 2001, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[63]  Mahmoud A. Ghannoum,et al.  Biofilm Formation by the Fungal PathogenCandida albicans: Development, Architecture, and Drug Resistance , 2001, Journal of bacteriology.

[64]  J. Millar,et al.  A MAP kinase-dependent actin checkpoint ensures proper spindle orientation in fission yeast , 2001, Nature.

[65]  R. M. Donlan,et al.  Biofilms and device-associated infections. , 2001, Emerging infectious diseases.

[66]  T. Stocker,et al.  Atmospheric CO2 concentrations over the last glacial termination. , 2001, Science.

[67]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[68]  M. Wisniewski,et al.  Antifungal Activity of 2-Deoxy-D-Glucose on Botrytis cinerea, Penicillium expansum, and Rhizopus stolonifer: Ultrastructural and Cytochemical Aspects. , 1997, Phytopathology.

[69]  K. Kuchler,et al.  Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters , 1995, Antimicrobial agents and chemotherapy.

[70]  L. J. Douglas,et al.  Resistance of Candida albicans biofilms to antifungal agents in vitro , 1995, Antimicrobial agents and chemotherapy.

[71]  A. Hyman,et al.  Real-time visualization of cell cycle-dependent changes in microtubule dynamics in cytoplasmic extracts , 1990, Cell.

[72]  K. Yokoyama,et al.  The role of microfilaments and microtubules in apical growth and dimorphism of Candida albicans. , 1990, Journal of general microbiology.