Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review

Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advanced understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems.

[1]  B. Kennedy,et al.  Timescales of texture development in a cooling lava dome , 2013 .

[2]  Justin E. Birdwell,et al.  Multivariate analysis of ATR-FTIR spectra for assessment of oil shale organic geochemical properties , 2013 .

[3]  A. Matuszewska,et al.  Application of reflectance micro-infrared spectroscopy in coal structure studies , 2003, Analytical and bioanalytical chemistry.

[4]  P. Davidson,et al.  Laser Raman spectroscopic measurements of water in unexposed glass inclusions , 2006 .

[5]  L. Stasiuk,et al.  Reflected light microscopy and micro-FTIR of Upper Ordovician Gloeocapsomorpha prisca alginite in relation to paleoenvironment and petroleum generation, Saskatchewan, Canada , 1993 .

[6]  M. Mastalerz,et al.  On the fundamental difference between coal rank and coal type , 2013 .

[7]  K. Katti,et al.  An in situ FTIR step-scan photoacoustic investigation of kerogen and minerals in oil shale. , 2012, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[8]  R. Suarez-Rivera,et al.  Understanding Permeability Measurements in Tight Shales Promotes Enhanced Determination of Reservoir Quality , 2012 .

[9]  J. Chorover,et al.  FTIR Spectroscopic Study of Biogenic Mn-Oxide Formation by Pseudomonas putida GB-1 , 2005 .

[10]  C. Hartkopf-Fröder,et al.  Macromolecular composition of Palaeozoic scolecodonts: insights into the molecular taphonomy of zoomorphs , 2009 .

[11]  R. Marc Bustin,et al.  The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs , 2009 .

[12]  M. Mastalerz,et al.  Compression–cuticle relationship of seed ferns: Insights from liquid–solid states FTIR (Late Palaeozoic–Early Mesozoic, Canada–Spain–Argentina) , 2009 .

[13]  J. Koenig,et al.  Least-Squares Curve-Fitting of Fourier Transform Infrared Spectra with Applications to Polymer Systems , 1977 .

[14]  A. Schimmelmann,et al.  Dike intrusions into bituminous coal, Illinois Basin: H, C, N, O isotopic responses to rapid and brief heating , 2009 .

[15]  P. King,et al.  Rapid water exsolution, degassing, and bubble collapse observed experimentally in K-phonolite melts , 2008 .

[16]  E. Llewellin,et al.  Distribution of dissolved water in magmatic glass records growth and resorption of bubbles , 2014 .

[17]  P. McMillan,et al.  Analyzing hydrogen (H2O) in silicate glass by secondary ion mass spectrometry and reflectance Fourier transform infrared spectroscopy , 2003 .

[18]  R. Bustin,et al.  Micro-FTIR spectroscopy of liptinite macerals in coal , 1998 .

[19]  S. Xuguang The investigation of chemical structure of coal macerals via transmitted-light FT-IR microspectroscopy. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[20]  M. Mastalerz,et al.  Application of reflectance micro-Fourier transform infrared analysis to the study of coal macerals: an example from the late jurassic to early cretaceous coals of the Mist Mountain Formation, British Columbia, Canada , 1996 .

[21]  Stephen Killops,et al.  An introduction to organic geochemistry , 1993 .

[22]  J. Dubessy,et al.  Application of Micro-FT-IR Spectroscopy to Individual Hydrocarbon Fluid Inclusion Analysis , 1987 .

[23]  A. Schimmelmann,et al.  D/H isotope ratios of kerogen, bitumen, oil, and water in hydrous pyrolysis of source rocks containing kerogen types I, II, IIS, and III , 1999 .

[24]  H. Behrens,et al.  Water in rhyolitic magmas: getting a grip on a slippery problem , 2001 .

[25]  M. Mastalerz,et al.  Chemical evolution of Miocene wood: Example from the Belchatow brown coal deposit, central Poland , 2006 .

[26]  Dilworth Y Parkinson,et al.  3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography , 2013, Nature Methods.

[27]  P. Griffiths Fourier Transform Infrared Spectrometry , 2007 .

[28]  A. Camargo,et al.  Chemometric study of functional groups in Pennsylvanian gymnosperm plant organs (Sydney Coalfield, Canada): implications for chemotaxonomy and assessment of kerogen formation. , 2010 .

[29]  B. Sulzberger,et al.  ATR-FTIR spectroscopic study of the adsorption of desferrioxamine B and aerobactin to the surface of lepidocrocite (γ-FeOOH) , 2009 .

[30]  A. Schimmelmann,et al.  FTIR absorption indices for thermal maturity in comparison with vitrinite reflectance R0 in type-II kerogens from Devonian black shales , 2005 .

[31]  B. Sreedhar,et al.  In situ FTIR study on the dehydration of natural goethite , 2006 .

[32]  M. Manga,et al.  Bubble geobarometry: A record of pressure changes, degassing, and regassing at Mono Craters, California , 2012 .

[33]  K. Tani,et al.  Spectroscopic FTIR imaging of water species in silicic volcanic glasses and melt inclusions: An example from the Izu-Bonin arc , 2006 .

[34]  D. Jarvie,et al.  Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment , 2007 .

[35]  A. Sobolev,et al.  Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications , 2002 .

[36]  Maria Mastalerz,et al.  Porosity of Coal and Shale: Insights from Gas Adsorption and SANS/USANS Techniques , 2012 .

[37]  H. Behrens,et al.  Water solubility in trachytic melts , 2004 .

[38]  A. Peslier A review of water contents of nominally anhydrous natural minerals in the mantles of Earth, Mars and the Moon , 2010 .

[39]  F. Laggoun‐Défarge,et al.  FTIR Study of Pure Vitrains and Associated Coals , 1995 .

[40]  J. Seewald Organic–inorganic interactions in petroleum-producing sedimentary basins , 2003, Nature.

[41]  R. Moretti,et al.  A CO2-rich magma source beneath the Phlegraean Volcanic District (Southern Italy): Evidence from a melt inclusion study , 2011 .

[42]  W. R. Jackson,et al.  An FTIR study of australian coals: Characterization of oxygen functional groups , 1988 .

[43]  T. Hirajima,et al.  Upgrading and dewatering of raw tropical peat by hydrothermal treatment , 2010 .

[44]  A. Cook,et al.  Influence of alginite on the reflectance of vitrinite from Joadja, NSW, and some other coals and oil shales containing alginite , 1980 .

[45]  C. Hartkopf-Fröder,et al.  Molecular characterization of fossil palynomorphs by transmission micro-FTIR spectroscopy: Implications for hydrocarbon source evaluation , 2013 .

[46]  P. Ildefonse,et al.  MULTICOMPONENT ANALYSIS OF FTIR SPECTRA: QUANTIFICATION OF AMORPHOUS AND CRYSTALLIZED MINERAL PHASES IN SYNTHETIC AND NATURAL SEDIMENTS , 1998 .

[47]  D. Amarasiriwardena,et al.  Application of diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) for the identification of potential diagenesis and crystallinity changes in teeth , 2004 .

[48]  A. Schimmelmann,et al.  Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy , 2012 .

[49]  S. Nakashima,et al.  Integral molar absorptivities of OH in muscovite at 20 to 650 °C by in-situ high-temperature IR microspectroscopy , 2010 .

[50]  R. Morga Chemical structure of semifusinite and fusinite of steam and coking coal from the Upper Silesian Coal Basin (Poland) and its changes during heating as inferred from micro-FTIR analysis , 2010 .

[51]  P. Painter,et al.  DETERMINATION OF FUNCTIONAL GROUPS IN COAL BY FOURIER TRANSFORM INTERFEROMETRY , 1985 .

[52]  J. Russell,et al.  Special Collection: Glasses, Melts, and Fluids, as Tools for Understanding Volcanic Processes and Hazards. Experiments and models on H2O retrograde solubility in volcanic systems , 2015 .

[53]  D. Dingwell,et al.  Near-infrared spectroscopic determination of water species in glasses of the system MAlSi3O8 (M = Li, Na, K) : an interlaboratory study , 1996 .

[54]  R. Lin,et al.  Studying individual macerals using i.r. microspectrometry, and implications on oil versus gas/condensate proneness and “low-rank” generation , 1993 .

[55]  P. King,et al.  A micro-reflectance IR spectroscopy method for analyzing volatile species in basaltic, andesitic, phonolitic, and rhyolitic glasses , 2013 .

[56]  A. Nichols,et al.  Using micro-FTIR spectroscopy to measure volatile contents in small and unexposed inclusions hosted in olivine crystals , 2007 .

[57]  R. Philp Petroleum Formation and Occurrence , 1985 .

[58]  L. Rintoul,et al.  Chemical functionalities of high and low sulfur Australian coals: A case study using micro attenuated total reflectance–Fourier transform infrared (ATR–FTIR) spectrometry , 2010 .

[59]  P. Prasad,et al.  Dehydration and rehydration of mesolite: An in situ FTIR study , 2007 .

[60]  Dennis Denney,et al.  Improving Horizontal Completions in Heterogeneous Tight Shales , 2012 .

[61]  A. Yasuda,et al.  A new technique using FT-IR micro-reflectance spectroscopy for measurement of water concentrations in melt inclusions , 2014, Earth, Planets and Space.

[62]  R. Sparks,et al.  The dynamics of bubble formation and growth in magmas , 1978 .

[63]  R. Kronig On the Theory of Dispersion of X-Rays , 1926 .

[64]  P. Saarinen,et al.  Multicomponent Analysis of FT-IR Spectra , 1991 .

[65]  M. Mastalerz,et al.  Compression map, functional groups and fossilization: A chemometric approach (Pennsylvanian neuropteroid foliage, Canada) , 2012 .

[66]  E. Stach,et al.  Stach's Textbook of coal petrology , 1975 .

[67]  J. Pironon,et al.  Semi-quantitative FT-IR microanalysis limits: Evidence from synthetic hydrocarbon fluid inclusions in sylvite , 1990 .

[68]  G. Rossman Analytical methods for measuring water in nominally anhydrous minerals , 2006 .

[69]  Edward M. Stolper,et al.  Water in silicate glasses: An infrared spectroscopic study , 1982 .

[70]  M. Calvin,et al.  Hydrocarbon distribution of algae and bacteria, and microbiological activity in sediments. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[71]  A. Schimmelmann,et al.  Mapping the chemistry of resinite, funginite and associated vitrinite in coal with micro‐FTIR , 2013, Journal of microscopy.

[72]  Carolyn R. Bertozzi,et al.  Methods and Applications , 2009 .

[73]  T. Robl,et al.  Comparison of the HF−HCl and HF−BF3 maceration techniques and the chemistry of resultant organic concentrates , 1993 .

[74]  C. Mandeville,et al.  Spectroscopic analysis (FTIR, Raman) of water in mafic and intermediate glasses and glass inclusions , 2010 .

[75]  B. Reynard,et al.  Quantification of water content and speciation in natural silicic glasses (phonolite, dacite, rhyolite) by confocal microRaman spectrometry , 2006 .

[76]  C. Geiger,et al.  Behavior of H2O molecules in the channels of natrolite and scolecite: A Raman and IR spectroscopic investigation of hydrous microporous silicates , 2006 .

[77]  F. Holtz,et al.  The solubility of H2O and CO2 in rhyolitic melts in equilibrium with a mixed CO2–H2O fluid phase , 2001 .

[78]  R. Lange,et al.  Densities of Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-TiO2-SiO2 liquids: New measurements and derived partial molar properties , 1987 .

[79]  P. Landais,et al.  Chemical basis of fluorescence alteration of crude oils and kerogens—II. Fluorescence and infrared micro-spectrometric analysis of vitrinite and liptinite , 1992 .

[80]  M. Mastalerz,et al.  Variation in maceral chemistry within and between coals of varying rank: An electron microprobe and micro‐Fourier transform infra‐red investigation , 1993 .

[81]  Abigail Matteson,et al.  Dual-Range FT-IR Mineralogy and the Analysis of Sedimentary Formations , 1997 .

[82]  H. Ohta,et al.  Micro-FTIR spectroscopic signatures of Bacterial lipids in Proterozoic microfossils , 2009 .

[83]  A. Marcelli,et al.  Application of micro-FTIR imaging in the Earth sciences , 2010, Analytical and bioanalytical chemistry.

[84]  V. Sautter,et al.  Synchrotron FTIR microanalysis of volatiles in melt inclusions and exsolved particles in ultramafic deep-seated garnets , 2005 .

[85]  M. Mastalerz,et al.  A geochemical study of macerals from a Miocene lignite and an Eocene bituminous coal, Indonesia , 1996 .

[86]  E. Zodrow,et al.  Chemometric study of functional groups in different layers of Trigonocarpus grandis ovules (Pennsylvanian seed fern, Canada) , 2011 .

[87]  Keyu Liu,et al.  Evidence for a palaeo-oil column and alteration of residual oil in a gas-condensate field: Integrated oil inclusion and experimental results , 2014 .

[88]  R. Littke,et al.  Highly aromatic character of biogeomacromolecules in Chitinozoa: A spectroscopic and pyrolytic study , 2007 .

[89]  M. Mastalerz,et al.  Functional groups and elemental analyses of cuticular morphotypes of Cordaites principalis (Germar) Geinitz, Carboniferous Maritimes Basin, Canada , 2000 .

[90]  D. Dingwell,et al.  Rapid ascent of rhyolitic magma at Chaitén volcano, Chile , 2009, Nature.

[91]  Youxue Zhang,et al.  Hydrous species geospeedometer in rhyolite: improved calibration and application , 2000 .

[92]  M. Mastalerz,et al.  Electron microprobe and micro-FTIR analyses applied to maceral chemistry , 1993 .

[93]  J. Delaney,et al.  Infrared spectroscopic measurements of CO2 and H2O in Juan de Fuca Ridge basaltic glasses , 1988 .

[94]  SR-FTIR Microscopy and FTIR Imaging in the Earth Sciences , 2013, 1312.5750.

[95]  Henry Clifton Sorby,et al.  On the Application of Quantitative Methods to the Study of the Structure and History of Rocks , 1908, Quarterly Journal of the Geological Society of London.

[96]  S. Derenne,et al.  Chemical characterization of torbanites by transmission micro-FTIR spectroscopy: Origin and extent of compositional heterogeneities , 1993 .

[97]  M. Manga,et al.  Vesiculation rates of obsidian domes inferred from H2O concentration profiles , 2005 .

[98]  A. Beran,et al.  The quantitative analysis of OH in vesuvianite: a polarized FTIR and SIMS study , 2005 .

[99]  F. Laggoun‐Défarge,et al.  Influence of Resinite on Huminite Properties , 1994 .

[100]  E. Stolper The speciation of water in silicate melts , 1982 .

[101]  A. Zimmerman,et al.  Sorption of the antibiotic ofloxacin to mesoporous and nonporous alumina and silica. , 2005, Journal of colloid and interface science.

[102]  Peter R. Griffiths,et al.  Resolution enhancement of diffuse reflectance i.r. spectra of coals by Fourier self-deconvolution: 1. C-H stretching and bending modes , 1985 .

[103]  P. Prasad,et al.  Dehydration of natural stilbite: An in situ FTIR study , 2005 .

[104]  F. Holtz,et al.  Compositional dependence of molar absorptivities of near-infrared OH- and H2O bands in rhyolitic to basaltic glasses , 2001 .

[105]  J. Dixon,et al.  Determination of the molar absorptivity of dissolved carbonate in basanitic glass , 1995 .

[106]  A. Schimmelmann,et al.  Heterogeneity of shale documented by micro‐FTIR and image analysis , 2014, Journal of microscopy.

[107]  Bernhard Schrader,et al.  Infrared and Raman spectroscopy : methods and applications , 1995 .

[108]  Edgar Muñoz,et al.  FTIR study of the evolution of coal structure during the coalification process , 1996 .

[109]  L. Rintoul,et al.  Application of attenuated total reflectance micro-Fourier transform infrared (ATR-FTIR) spectroscopy to the study of coal macerals: Examples from the Bowen Basin, Australia , 2007 .

[110]  A. Turek,et al.  Determination of chemical water in rock analysis by Karl Fischer titration , 1976 .

[111]  P. R. Solomon,et al.  FT-i.r. analysis of coal: 2. Aliphatic and aromatic hydrogen concentration , 1988 .

[112]  M. Mastalerz,et al.  Microanalysis of barkinite from Chinese coals of high volatile bituminous rank , 2015 .

[113]  R. Loucks,et al.  Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale , 2009 .

[114]  H. Behrens,et al.  Quantification of H2O Speciation in Silicate Glasses and Melts by IR Spectroscopy - in situ versus Quench Techniques , 2003 .

[115]  R. Lange,et al.  The Density of Hydrous Magmatic Liquids. , 1999, Science.

[116]  P. Estep,et al.  Quantitative infrared multicomponent analysis of minerals occurring in coal , 1967 .

[117]  P. McMillan,et al.  Analyzing hydrogen (H 2 O) in silicate glass by secondary ion mass spectrometry and reflectance Fourier transform infrared spectroscopy , 2003 .

[118]  P. McMillan,et al.  Analytical methods for volatiles in glasses , 1994 .

[119]  D. Neuville,et al.  Quantification of dissolved H2O in silicate glasses using confocal microRaman spectroscopy , 2006 .

[120]  L. Puskar,et al.  Advances in Fourier transform infrared spectroscopy of natural glasses: From sample preparation to data analysis , 2014 .

[121]  A. Schimmelmann,et al.  Quantitative analysis of shales by KBr-FTIR and micro-FTIR , 2014 .

[122]  T. Jones,et al.  Bulk mineralogical characterisation of oilfield reservoir rocks and sandstones using Diffuse Reflectance Infrared Fourier Transform Spectroscopy and Partial Least Squares analysis , 2008 .

[123]  P. R. Solomon,et al.  Use of Fourier Transform infrared spectroscopy for determining oil shale properties , 1980 .

[124]  J. Blundy,et al.  Magma ascent rates in explosive eruptions: Constraints from H2O diffusion in melt inclusions , 2008 .

[125]  E. Dedyukhina,et al.  A review on microbial synthesis of hydrocarbons , 2006 .

[126]  G. Parodi,et al.  Single-crystal FTIR and X-ray study of vishnevite, ideally [Na6(SO4)][Na2(H2O)2](Si6Al6O24) , 2007 .

[127]  E. A. Johnson Water in Nominally Anhydrous Crustal Minerals: Speciation, Concentration, and Geologic Significance , 2006 .

[128]  P. Walker,et al.  Fourier Transform Infrared study of mineral matter in coal. A novel method for quantitative mineralogical analysis , 1978 .

[129]  M. Mastalerz Application of reflectance micro-Fourier transform infrared spectrometry in studying coal macerals: comparison with other Fourier transform infrared techniques , 1995 .

[130]  B. D. Ballard Quantitative Mineralogy of Reservoir Rocks Using Fourier Transform Infrared Spectroscopy , 2007 .

[131]  Tomas Hirschfeld,et al.  Internal Reflection Spectroscopy , 1967 .

[132]  K. Takai,et al.  FTIR microspectroscopy of Ediacaran phosphatized microfossils from the Doushantuo Formation, Weng'an, South China , 2014 .

[133]  D. Pyle,et al.  Element variations in rhyolitic magma resulting from gas transport , 2013 .