Optical Biosensors Based on Semiconductor Nanostructures

The increasing availability of semiconductor-based nanostructures with novel and unique properties has sparked widespread interest in their use in the field of biosensing. The precise control over the size, shape and composition of these nanostructures leads to the accurate control of their physico-chemical properties and overall behavior. Furthermore, modifications can be made to the nanostructures to better suit their integration with biological systems, leading to such interesting properties as enhanced aqueous solubility, biocompatibility or bio-recognition. In the present work, the most significant applications of semiconductor nanostructures in the field of optical biosensing will be reviewed. In particular, the use of quantum dots as fluorescent bioprobes, which is the most widely used application, will be discussed. In addition, the use of some other nanometric structures in the field of biosensing, including porous semiconductors and photonic crystals, will be presented.

[1]  N. Chaniotakis,et al.  Novel carbon materials in biosensor systems. , 2003, Biosensors & bioelectronics.

[2]  I. Rubinstein,et al.  Intracellular delivery of VIP-grafted sterically stabilized phospholipid mixed nanomicelles in human breast cancer cells. , 2008, Chemico-biological interactions.

[3]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[4]  Chun-Yang Zhang,et al.  Quantum-dot-based nanosensor for RRE IIB RNA-Rev peptide interaction assay. , 2006, Journal of the American Chemical Society.

[5]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[6]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[7]  Isabelle Texier,et al.  Activatable quantum dots for mouse non-invasive fluorescence imaging , 2007, European Conference on Biomedical Optics.

[8]  Jennifer S. Park,et al.  Qdot nanobarcodes for multiplexed gene expression analysis. , 2006, Nano letters.

[9]  Nicolas H Voelcker,et al.  Porous silicon biosensors on the advance. , 2009, Trends in biotechnology.

[10]  M. Ghadiri,et al.  A porous silicon-based optical interferometric biosensor. , 1997, Science.

[11]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[12]  S. Nie,et al.  Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules , 2001, Nature Biotechnology.

[13]  Igor L. Medintz,et al.  Multiplexed toxin analysis using four colors of quantum dot fluororeagents. , 2004, Analytical chemistry.

[14]  T. Pellegrino,et al.  Synthesis and biological assay of GSH functionalized fluorescent quantum dots for staining Hydra vulgaris. , 2007, Bioconjugate chemistry.

[15]  Hao Wang,et al.  Atomic force microscopy-based cell nanostructure for ligand-conjugated quantum dot endocytosis. , 2006, Acta biochimica et biophysica Sinica.

[16]  Feng Wang,et al.  Luminescent nanomaterials for biological labelling , 2005, Nanotechnology.

[17]  A Kriete,et al.  Automated quantification of quantum‐dot‐labelled epidermal growth factor receptor internalization via multiscale image segmentation , 2006, Journal of microscopy.

[18]  Sung Ju Cho,et al.  Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells , 2007, Journal of nanobiotechnology.

[19]  Kevin C Weng,et al.  Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo. , 2008, Nano letters.

[20]  H. Yeh,et al.  Single-quantum-dot-based DNA nanosensor , 2005, Nature materials.

[21]  P. Alivisatos The use of nanocrystals in biological detection , 2004, Nature Biotechnology.

[22]  Igor L. Medintz,et al.  Self-assembled quantum dot-peptide bioconjugates for selective intracellular delivery. , 2006, Bioconjugate chemistry.

[23]  Mihrimah Ozkan,et al.  Quantum dots and other nanoparticles: what can they offer to drug discovery? , 2004, Drug discovery today.

[24]  Kostas Kostarelos,et al.  Functionalized-quantum-dot-liposome hybrids as multimodal nanoparticles for cancer. , 2008, Small.

[25]  M. Bruchez,et al.  Optical coding of mammalian cells using semiconductor quantum dots. , 2004, Analytical biochemistry.

[26]  Z. Tang,et al.  Bioapplication of nanosemiconductors , 2005 .

[27]  T. Jovin,et al.  Biotin-ligand complexes with streptavidin quantum dots for in vivo cell labeling of membrane receptors. , 2007, Methods in molecular biology.

[28]  Jianrong Chen,et al.  Nanotechnology and biosensors. , 2004, Biotechnology advances.

[29]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[30]  D. Nesbitt,et al.  Solution control of radiative and nonradiative lifetimes: a novel contribution to quantum dot blinking suppression. , 2008, Nano letters.

[31]  Igor L. Medintz,et al.  Reversible modulation of quantum dot photoluminescence using a protein- bound photochromic fluorescence resonance energy transfer acceptor. , 2004, Journal of the American Chemical Society.

[32]  T. Jovin,et al.  Quantitative single particle tracking of NGF–receptor complexes: Transport is bidirectional but biased by longer retrograde run lengths , 2007, FEBS letters.

[33]  Raúl J. Martín-Palma,et al.  Porous silicon optical filters for biosensing applications , 2006 .

[34]  T. Hirano,et al.  An antibody-conjugated internalizing quantum dot suitable for long-term live imaging of cells. , 2007, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[35]  A. Vaseashta,et al.  Nanostructured and nanoscale devices, sensors and detectors , 2005 .

[36]  T. Vu,et al.  Ligand-bound quantum dot probes for studying the molecular scale dynamics of receptor endocytic trafficking in live cells. , 2008, ACS nano.

[37]  B. Cui,et al.  One at a time, live tracking of NGF axonal transport using quantum dots , 2007, Proceedings of the National Academy of Sciences.

[38]  J L West,et al.  Applications of nanotechnology to biotechnology commentary. , 2000, Current opinion in biotechnology.

[39]  Yun Xiang,et al.  Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. , 2006, Journal of the American Chemical Society.

[40]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[41]  Jasmina Lovrić,et al.  Fate of micelles and quantum dots in cells. , 2007, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[42]  Pin Wang,et al.  Site-specific labeling of enveloped viruses with quantum dots for single virus tracking. , 2008, ACS nano.

[43]  P. Fauchet,et al.  Two-dimensional silicon photonic crystal based biosensing platform for protein detection. , 2007, Optics express.

[44]  Raúl J. Martín-Palma,et al.  Porous silicon optical devices for sensing applications , 2005 .

[45]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[46]  Karolin F Meyer,et al.  Quantum dot-carrier peptide conjugates suitable for imaging and delivery applications. , 2008, Bioconjugate chemistry.

[47]  Yi Li,et al.  Porous Silicon Microcavities for Biosensing Applications , 2000 .

[48]  Igor L. Medintz,et al.  Biosensing with Luminescent Semiconductor Quantum Dots , 2006, Sensors (Basel, Switzerland).

[49]  Dale M. Willard,et al.  CdSe−ZnS Quantum Dots as Resonance Energy Transfer Donors in a Model Protein−Protein Binding Assay , 2001 .