Semi-Baxter and Strong-Baxter: Two Relatives of the Baxter Sequence

In this paper, we enumerate two families of pattern-avoiding permutations: those avoiding the vincular pattern $2-41-3$, which we call semi-Baxter permutations, and those avoiding the vincular patterns $2-41-3$, $3-14-2$ and $3-41-2$, which we call strong-Baxter permutations. We call semi-Baxter numbers and strong-Baxter numbers the associated enumeration sequences. We prove that the semi-Baxter numbers enumerate in addition plane permutations (avoiding $2-14-3$). The problem of counting these permutations was open and has given rise to several conjectures, which we also prove in this paper. For each family (that of semi-Baxter -- or equivalently, plane -- and that of strong-Baxter permutations), we describe a generating tree, which translates into a functional equation for the generating function. For semi-Baxter permutations, it is solved using (a variant of) the kernel method: this gives an expression for the generating function while also proving its D-finiteness. From the obtained generating function, we derive closed formulas for the semi-Baxter numbers, a recurrence that they satisfy, as well as their asymptotic behavior. For strong-Baxter permutations, we show that their generating function is (a slight modification of) that of a family of walks in the quarter plane, which is known to be non D-finite.

[1]  Mathilde Bouvel,et al.  Slicings of Parallelogram Polyominoes: Catalan, Schröder, Baxter, and Other Sequences , 2015, Electron. J. Comb..

[2]  Mireille Bousquet-Mélou,et al.  Four Classes of Pattern-Avoiding Permutations Under One Roof: Generating Trees with Two Labels , 2003, Electron. J. Comb..

[3]  Stefan Felsner,et al.  Bijections for Baxter families and related objects , 2008, J. Comb. Theory A.

[4]  Esaias J. Janse van Rensburg,et al.  Partially directed paths in a wedge , 2008, J. Comb. Theory, Ser. A.

[5]  Carla D. Savage,et al.  Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations , 2016, J. Integer Seq..

[6]  Richard J. McIntosh An Asymptotic Formula for Binomial Sums , 1996 .

[7]  Julian West,et al.  Generating trees and the Catalan and Schröder numbers , 1995, Discret. Math..

[8]  S. Gire,et al.  Arbres, permutations à motifs exclus et cartes planaires : quelques problèmes algorithmiques et combinatoires , 1993 .

[9]  Alberto Del Lungo,et al.  ECO:a methodology for the enumeration of combinatorial objects , 1999 .

[10]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[12]  Marni Mishna,et al.  Walks with small steps in the quarter plane , 2008, 0810.4387.

[13]  Michael H. Albert,et al.  Generating permutations with restricted containers , 2018, J. Comb. Theory, Ser. A.

[14]  Alin Bostan,et al.  Non-D-finite excursions in the quarter plane , 2012, J. Comb. Theory A.

[15]  Mireille Bousquet-Mélou,et al.  Forest-Like Permutations , 2006, math/0603617.

[16]  Mark Shattuck,et al.  Some Wilf-equivalences for vincular patterns , 2015 .

[17]  Anisse Kasraoui,et al.  New Wilf-equivalence results for vincular patterns , 2013, Eur. J. Comb..

[18]  M. Bouvel,et al.  Slicings of parallelogram polyominoes, or how Baxter and Schröder can be reconciled , 2016 .

[19]  G. Xin,et al.  ON PARTITIONS AVOIDING 3-CROSSINGS , 2005, math/0506551.

[20]  M. Bouvel,et al.  Refined Enumeration of Permutations Sorted with Two Stacks and a D8-Symmetry , 2012, 1210.5967.

[21]  Mireille Bousquet-Mélou,et al.  Generating functions for generating trees , 2002, Discret. Math..

[22]  Nicolas Bonichon,et al.  Baxter permutations and plane bipolar orientations , 2008, Electron. Notes Discret. Math..

[23]  David Bevan,et al.  On the growth of permutation classes , 2015, 1506.06688.

[24]  Marko Petkovšek,et al.  A=B : 等式証明とコンピュータ , 1997 .

[25]  Fan Chung Graham,et al.  The Number of Baxter Permutations , 1978, J. Comb. Theory, Ser. A.

[26]  Lara Pudwell,et al.  Enumeration Schemes for Permutations Avoiding Barred Patterns , 2010, Electron. J. Comb..