High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error

A liquid lens structure with a step response time of 2 ms, a refractive power range of 52 D, and a root-mean-square (rms) wavefront error of 80.3 nm is reported. This lens uses a liquid-liquid interface with a pinned contact line as a variable refractive surface, and its shape is controlled by a piezostack actuator via a built-in hydraulic amplifier. The measured wavefront error suggests that the method of pinning the contact line to a precise shape is an important factor in achieving higher optical performance.

[1]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[2]  B. Berge,et al.  Variable focal lens controlled by an external voltage: An application of electrowetting , 2000 .

[3]  Shanti Bhattacharya,et al.  Fast switching liquid crystal lenses for a dual focus digital versatile disc pickup , 2001 .

[4]  Shin-Tson Wu,et al.  Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index , 2002 .

[5]  George M. Whitesides,et al.  Control of the shape of liquid lenses on a modified gold surface using an applied electrical potential across a self-assembled monolayer , 1995 .

[6]  Shin-Tson Wu,et al.  Tunable-focus liquid microlens array using dielectrophoretic effect. , 2008, Optics express.

[7]  Masatoshi Ishikawa,et al.  A Reconfigurable Embedded System for 1000 f/s Real-Time Vision , 2010, IEEE Transactions on Circuits and Systems for Video Technology.

[8]  Bin Wang,et al.  Liquid crystal lens with stacked structure of liquid-crystal layers , 2005 .

[9]  Amir Hirsa,et al.  Fast focusing using a pinned-contact oscillating liquid lens , 2008 .

[10]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[11]  H. Oku,et al.  Rapid Liquid Variable-Focus Lens with 2-ms Response , 2006, LEOS 2006 - 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[12]  Amir Hirsa,et al.  Electrochemically activated adaptive liquid lens , 2005 .

[13]  J. Yeh,et al.  Variable focus dielectric liquid droplet lens. , 2006, Optics express.

[14]  I. Ishii,et al.  Development of a mega-pixel and milli-second vision system using intelligent pixel selection , 2004, IEEE Conference on Robotics and Automation, 2004. TExCRA Technical Exhibition Based..

[15]  Nobuyuki Ohya,et al.  A new, compact and quick-response dynamic focusing lens , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[16]  Allen Nussbaum,et al.  Optical System Design , 1997 .

[17]  Martin E. R. Shanahan,et al.  Meniscus shape and contact angle of a slightly deformed axisymmetric drop , 1989 .

[18]  John W. Miles,et al.  The capillary boundary layer for standing waves , 1991, Journal of Fluid Mechanics.

[19]  A. K. Agarwal,et al.  Adaptive liquid microlenses activated by stimuli-responsive hydrogels , 2006, Nature.

[20]  Shinichi Hirai,et al.  CMOS+FPGA vision system for visual feedback of mechanical systems , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[21]  J. F. Brenner,et al.  An automated microscope for cytologic research a preliminary evaluation. , 1976, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[22]  Hiroyoshi Funato,et al.  Lead-Lanthanum Zirconate-Titanate (PLZT) Electrooptic Variable Focal-Length Lens with Stripe Electrodes , 1992 .

[23]  Peter Malcolm Moran,et al.  Fluidic lenses with variable focal length , 2006 .

[24]  Shin-Tson Wu,et al.  Liquid-crystal microlens arrays using patterned polymer networks. , 2004, Optics letters.

[25]  Masatoshi Ishikawa,et al.  Variable-focus lens with 1-kHz bandwidth. , 2004, Optics express.

[26]  D. A. Mlynski,et al.  FAST ADAPTIVE LENS BASED ON DEFORMED HELICAL FERROELECTRIC LIQUID CRYSTAL , 1996 .

[27]  S. Kuiper,et al.  Variable-focus liquid lens for miniature cameras , 2004 .

[28]  Hiromasa Oku,et al.  High-speed liquid lens with 2-ms response and 80.3-nm root-mean-square wavefront error , 2010, MOEMS-MEMS.

[29]  Yeshaiahu Fainman,et al.  Pneumatically actuated adaptive lenses with millisecond response time , 2007 .

[30]  Shin-Tson Wu,et al.  Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals , 2003 .