Geodesic stretch, pressure metric and marked length spectrum rigidity
暂无分享,去创建一个
Gerhard Knieper | Colin Guillarmou | Thibault Lefeuvre | Gerhard Knieper | C. Guillarmou | Thibault Lefeuvre
[1] A. Avila,et al. An integrable deformation of an ellipse of small eccentricity is an ellipse , 2014, 1412.2853.
[2] Andr'es Sambarino,et al. Quantitative properties of convex representations , 2011, 1104.4705.
[3] Michael Taylor,et al. Pseudodifferential Operators and Nonlinear PDE , 1991 .
[4] Richard S. Hamilton,et al. The inverse function theorem of Nash and Moser , 1982 .
[5] A. Katok. Four applications of conformal equivalence to geometry and dynamics , 1988, Ergodic Theory and Dynamical Systems.
[6] Andr'es Sambarino,et al. The pressure metric for Anosov representations , 2013, 1301.7459.
[7] Gérard Besson,et al. Entropies et rigidités des espaces localement symétriques de courbure strictement négative , 1995 .
[8] Regularity of entropy, geodesic currents and entropy at infinity , 2018, 1802.04991.
[9] B. Hasselblatt,et al. Hyperbolic Flows , 2019 .
[10] M. Bridson,et al. Metric Spaces of Non-Positive Curvature , 1999 .
[11] V. Sharafutdinov,et al. On conformal Killing symmetric tensor fields on Riemannian manifolds , 2011, 1103.3637.
[12] A. Tromba. Teichmüller Theory in Riemannian Geometry , 2004 .
[13] Bernd Eggers,et al. Nonlinear Functional Analysis And Its Applications , 2016 .
[14] David G. Ebin,et al. On the space of Riemannian metrics , 1968 .
[15] G. Uhlmann,et al. Regularity of ghosts in tensor tomography , 2005 .
[16] W. Klingenberg. Riemannian Manifolds With Geodesic Flow of Anosov Type , 1974 .
[17] Karl Sigmund,et al. On the Space of Invariant Measures for Hyperbolic Flows , 1972 .
[18] R. Llave,et al. Canonical perturbation theory of Anosov systems, and regularity results for the Livsic cohomology equation , 1985 .
[19] Thurston's Riemannian metric for Teichmüller space , 1986 .
[20] S. Dyatlov,et al. Dynamical zeta functions for Anosov flows via microlocal analysis , 2013, 1306.4203.
[21] Cocycles, Symplectic Structures and Intersection , 1997, dg-ga/9710009.
[22] N. V. Dang,et al. The Fried conjecture in small dimensions , 2018, Inventiones mathematicae.
[23] M. Salo,et al. Spectral rigidity and invariant distributions on Anosov surfaces , 2012, 1208.4943.
[24] M. Gromov,et al. Manifolds of Nonpositive Curvature , 1985 .
[25] M. Pollicott. Derivatives of topological entropy for Anosov and geodesic flows , 1994 .
[26] W. Parry,et al. Zeta functions and the periodic orbit structure of hyperbolic dynamics , 1990 .
[27] R. Llave,et al. Canonical perturbation theory of Anosov systems and regularity results for the Livsic cohomology equation , 1986 .
[28] C. Croke,et al. Spectral rigidity of a compact negatively curved manifold The first author was partly supported , 1998 .
[29] S. Dyatlov,et al. Mathematical Theory of Scattering Resonances , 2019, Graduate Studies in Mathematics.
[30] C. McMullen. Thermodynamics, dimension and the Weil–Petersson metric , 2008 .
[31] J. Simoi,et al. Dynamical spectral rigidity among $\mathbb{Z}_2$-symmetric strictly convex domains close to a circle (Appendix B coauthored with H. Hezari) , 2017 .
[32] A. Fathi,et al. Infinitesimal conjugacies and Weil-Petersson metric , 1993 .
[33] G. Uhlmann,et al. Two dimensional compact simple Riemannian manifolds are boundary distance rigid , 2003, math/0305280.
[34] Minimal stretch maps between hyperbolic surfaces , 1998, math/9801039.
[35] VOLUME GROWTH, ENTROPY AND THE GEODESIC STRETCH , 1995 .
[36] W. Parry. Equilibrium states and weighted uniform distribution of closed orbits , 1988 .
[37] M. Pollicott,et al. Equilibrium States in Negative Curvature , 2012, 1211.6242.
[38] G. Contreras. Regularity of topological and metric entropy of hyperbolic flows , 1992 .
[39] Jean-Pierre Otal. Le spectre marqué des longueurs des surfaces à courbure négative , 1990 .
[40] C. Liverani. On contact Anosov flows , 2004 .
[41] Y. Bonthonneau. Perturbation of Ruelle resonances and Faure–Sjöstrand anisotropic space , 2020, Revista de la Unión Matemática Argentina.
[42] S. Gouezel,et al. Classical and microlocal analysis of the x-ray transform on Anosov manifolds , 2019, 1904.12290.
[43] Andr'es Sambarino,et al. An introduction to pressure metrics for higher Teichmüller spaces , 2015, Ergodic Theory and Dynamical Systems.
[44] C. Guillarmou,et al. The marked length spectrum of Anosov manifolds , 2018, Annals of Mathematics.
[45] C. Guillarmou. Invariant distributions and X-ray transform for Anosov flows , 2014, 1408.4732.
[46] P. Walters. Introduction to Ergodic Theory , 1977 .
[47] E. Zeidler. Nonlinear Functional Analysis and its Applications: IV: Applications to Mathematical Physics , 1997 .
[48] Michael E. Taylor,et al. Partial Differential Equations , 1996 .
[49] J. Sjöstrand,et al. Upper Bound on the Density of Ruelle Resonances for Anosov Flows , 2010, 1003.0513.