Geodesic stretch, pressure metric and marked length spectrum rigidity

We refine the recent local rigidity result for the marked length spectrum obtained by the first and third author in [GL19] and give an alternative proof using the geodesic stretch between two Anosov flows and some uniform estimate on the variance appearing in the central limit theorem for Anosov geodesic flows. In turn, we also introduce a new pressure metric on the space of isometry classes, which reduces to the Weil–Petersson metric in the case of Teichmüller space and is related to the works [BCLS15, MM08].

[1]  A. Avila,et al.  An integrable deformation of an ellipse of small eccentricity is an ellipse , 2014, 1412.2853.

[2]  Andr'es Sambarino,et al.  Quantitative properties of convex representations , 2011, 1104.4705.

[3]  Michael Taylor,et al.  Pseudodifferential Operators and Nonlinear PDE , 1991 .

[4]  Richard S. Hamilton,et al.  The inverse function theorem of Nash and Moser , 1982 .

[5]  A. Katok Four applications of conformal equivalence to geometry and dynamics , 1988, Ergodic Theory and Dynamical Systems.

[6]  Andr'es Sambarino,et al.  The pressure metric for Anosov representations , 2013, 1301.7459.

[7]  Gérard Besson,et al.  Entropies et rigidités des espaces localement symétriques de courbure strictement négative , 1995 .

[8]  Regularity of entropy, geodesic currents and entropy at infinity , 2018, 1802.04991.

[9]  B. Hasselblatt,et al.  Hyperbolic Flows , 2019 .

[10]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[11]  V. Sharafutdinov,et al.  On conformal Killing symmetric tensor fields on Riemannian manifolds , 2011, 1103.3637.

[12]  A. Tromba Teichmüller Theory in Riemannian Geometry , 2004 .

[13]  Bernd Eggers,et al.  Nonlinear Functional Analysis And Its Applications , 2016 .

[14]  David G. Ebin,et al.  On the space of Riemannian metrics , 1968 .

[15]  G. Uhlmann,et al.  Regularity of ghosts in tensor tomography , 2005 .

[16]  W. Klingenberg Riemannian Manifolds With Geodesic Flow of Anosov Type , 1974 .

[17]  Karl Sigmund,et al.  On the Space of Invariant Measures for Hyperbolic Flows , 1972 .

[18]  R. Llave,et al.  Canonical perturbation theory of Anosov systems, and regularity results for the Livsic cohomology equation , 1985 .

[19]  Thurston's Riemannian metric for Teichmüller space , 1986 .

[20]  S. Dyatlov,et al.  Dynamical zeta functions for Anosov flows via microlocal analysis , 2013, 1306.4203.

[21]  Cocycles, Symplectic Structures and Intersection , 1997, dg-ga/9710009.

[22]  N. V. Dang,et al.  The Fried conjecture in small dimensions , 2018, Inventiones mathematicae.

[23]  M. Salo,et al.  Spectral rigidity and invariant distributions on Anosov surfaces , 2012, 1208.4943.

[24]  M. Gromov,et al.  Manifolds of Nonpositive Curvature , 1985 .

[25]  M. Pollicott Derivatives of topological entropy for Anosov and geodesic flows , 1994 .

[26]  W. Parry,et al.  Zeta functions and the periodic orbit structure of hyperbolic dynamics , 1990 .

[27]  R. Llave,et al.  Canonical perturbation theory of Anosov systems and regularity results for the Livsic cohomology equation , 1986 .

[28]  C. Croke,et al.  Spectral rigidity of a compact negatively curved manifold The first author was partly supported , 1998 .

[29]  S. Dyatlov,et al.  Mathematical Theory of Scattering Resonances , 2019, Graduate Studies in Mathematics.

[30]  C. McMullen Thermodynamics, dimension and the Weil–Petersson metric , 2008 .

[31]  J. Simoi,et al.  Dynamical spectral rigidity among $\mathbb{Z}_2$-symmetric strictly convex domains close to a circle (Appendix B coauthored with H. Hezari) , 2017 .

[32]  A. Fathi,et al.  Infinitesimal conjugacies and Weil-Petersson metric , 1993 .

[33]  G. Uhlmann,et al.  Two dimensional compact simple Riemannian manifolds are boundary distance rigid , 2003, math/0305280.

[34]  Minimal stretch maps between hyperbolic surfaces , 1998, math/9801039.

[35]  VOLUME GROWTH, ENTROPY AND THE GEODESIC STRETCH , 1995 .

[36]  W. Parry Equilibrium states and weighted uniform distribution of closed orbits , 1988 .

[37]  M. Pollicott,et al.  Equilibrium States in Negative Curvature , 2012, 1211.6242.

[38]  G. Contreras Regularity of topological and metric entropy of hyperbolic flows , 1992 .

[39]  Jean-Pierre Otal Le spectre marqué des longueurs des surfaces à courbure négative , 1990 .

[40]  C. Liverani On contact Anosov flows , 2004 .

[41]  Y. Bonthonneau Perturbation of Ruelle resonances and Faure–Sjöstrand anisotropic space , 2020, Revista de la Unión Matemática Argentina.

[42]  S. Gouezel,et al.  Classical and microlocal analysis of the x-ray transform on Anosov manifolds , 2019, 1904.12290.

[43]  Andr'es Sambarino,et al.  An introduction to pressure metrics for higher Teichmüller spaces , 2015, Ergodic Theory and Dynamical Systems.

[44]  C. Guillarmou,et al.  The marked length spectrum of Anosov manifolds , 2018, Annals of Mathematics.

[45]  C. Guillarmou Invariant distributions and X-ray transform for Anosov flows , 2014, 1408.4732.

[46]  P. Walters Introduction to Ergodic Theory , 1977 .

[47]  E. Zeidler Nonlinear Functional Analysis and its Applications: IV: Applications to Mathematical Physics , 1997 .

[48]  Michael E. Taylor,et al.  Partial Differential Equations , 1996 .

[49]  J. Sjöstrand,et al.  Upper Bound on the Density of Ruelle Resonances for Anosov Flows , 2010, 1003.0513.