Finite volume hydromechanical simulation in porous media

Cell-centered finite volume methods are prevailing in numerical simulation of flow in porous media. However, due to the lack of cell-centered finite volume methods for mechanics, coupled flow and deformation is usually treated either by coupled finite-volume-finite element discretizations, or within a finite element setting. The former approach is unfavorable as it introduces two separate grid structures, while the latter approach loses the advantages of finite volume methods for the flow equation. Recently, we proposed a cell-centered finite volume method for elasticity. Herein, we explore the applicability of this novel method to provide a compatible finite volume discretization for coupled hydromechanic flows in porous media. We detail in particular the issue of coupling terms, and show how this is naturally handled. Furthermore, we observe how the cell-centered finite volume framework naturally allows for modeling fractured and fracturing porous media through internal boundary conditions. We support the discussion with a set of numerical examples: the convergence properties of the coupled scheme are first investigated; second, we illustrate the practical applicability of the method both for fractured and heterogeneous media.

[1]  Ivar Aavatsmark,et al.  Monotonicity of control volume methods , 2007, Numerische Mathematik.

[2]  Douglas N. Arnold,et al.  Mixed finite elements for elasticity , 2002, Numerische Mathematik.

[3]  Mary F. Wheeler,et al.  Coupling multipoint flux mixed finite element methodswith continuous Galerkin methods for poroelasticity , 2013, Computational Geosciences.

[4]  Roland Masson,et al.  Convergence of Finite Volume MPFA O type Schemes for Heterogeneous Anisotropic Diffusion Problems on General Meshes , 2010 .

[5]  Ragnar Winther,et al.  Robust convergence of multi point flux approximation on rough grids , 2006, Numerische Mathematik.

[6]  G. T. Eigestad,et al.  On the convergence of the multi-point flux approximation O-method: Numerical experiments for discontinuous permeability , 2005 .

[7]  Andro Mikelić,et al.  Convergence of iterative coupling for coupled flow and geomechanics , 2013, Computational Geosciences.

[8]  K. Kodama Application of broadband alternating current magnetic susceptibility to the characterization of magnetic nanoparticles in natural materials , 2013 .

[9]  Hrvoje Jasak,et al.  Application of the finite volume method and unstructured meshes to linear elasticity , 2000 .

[10]  D. Marcotte,et al.  Lamé parameters of common rocks in the Earth's crust and upper mantle , 2010 .

[11]  I. Babuska,et al.  Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods , 1983 .

[12]  Simon Lemaire Discrétisations non-conformes d'un modèle poromécanique sur maillages généraux , 2013 .

[13]  Terry Wayne Stone,et al.  Fully Coupled Geomechanics in a Commercial Reservoir Simulator , 2000 .

[14]  Anthony R. Ingraffea,et al.  Numerical simulation of 3D hydraulic fracture using Newtonian and power-law fluids , 1993 .

[15]  B. Schrefler,et al.  The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media , 1998 .

[16]  Michael G. Edwards,et al.  Finite volume discretization with imposed flux continuity for the general tensor pressure equation , 1998 .

[17]  Ivar Aavatsmark,et al.  Discretization on Non-Orthogonal, Quadrilateral Grids for Inhomogeneous, Anisotropic Media , 1996 .

[18]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .

[19]  K. N. Seetharamu,et al.  The Finite Element Method , 2005 .

[20]  M. Kubik The Future of Geothermal Energy , 2006 .

[21]  I. Aavatsmark,et al.  An Introduction to Multipoint Flux Approximations for Quadrilateral Grids , 2002 .

[22]  K. Aziz,et al.  Petroleum Reservoir Simulation , 1979 .

[23]  Jan M Nordbotten,et al.  Practical Modeling Approaches for Geological Storage of Carbon Dioxide , 2009, Ground water.

[24]  Florin A. Radu,et al.  Convergence of MPFA on triangulations and for Richards' equation , 2008 .

[25]  Ruben Juanes,et al.  Stability, Accuracy and Efficiency of Sequential Methods for Coupled Flow and Geomechanics , 2009 .

[26]  R. Temam,et al.  Mathematical Modeling in Continuum Mechanics: Index , 2000 .

[27]  P. Davy,et al.  A model of fracture nucleation, growth and arrest, and consequences for fracture density and scaling , 2013 .

[28]  Ø. Pettersen,et al.  COUPLED FLOW – AND ROCK MECHANICS SIMULATION : OPTIMIZING THE COUPLING TERM FOR FASTER AND ACCURATE COMPUTATION , 2012 .

[29]  Thomas J. R. Hughes,et al.  The Continuous Galerkin Method Is Locally Conservative , 2000 .

[30]  T. F. Russell,et al.  Finite element and finite difference methods for continuous flows in porous media. , 1800 .

[31]  A. Physique Water Resources Research , 2011 .

[32]  C. Cipolla,et al.  Reservoir Modeling in Shale-Gas Reservoirs , 2010 .

[33]  Subir K. Sanyal,et al.  FUTURE OF GEOTHERMAL ENERGY , 2010 .

[34]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[35]  Bradley T. Mallison,et al.  A New Finite-Volume Approach to Efficient Discretization on Challenging Grids , 2007 .

[36]  Carl Joachim Berdal Haga,et al.  Numerical methods for basin-scale poroelastic modelling , 2011 .

[37]  Paul A. Wawrzynek,et al.  Simulation of the fracture process in rock with application to hydrofracturing , 1986 .

[38]  D. Vasco,et al.  Coupled reservoir-geomechanical analysis of CO2 injection and ground deformations at In Salah, Algeria , 2010 .